Вход/Регистрация
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
вернуться

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

Рисунок 4-1 Тест К-С

Чем ниже значение D, тем больше похожи два распределения. Мы можем преоб­разовать значение D в уровень значимости с помощью следующей формулы:

где SIG = уровень значимости для данного D и N;

D = статистика К-С;

N = количество сделок, по которым определена статистика К-С;

% = оператор, означающий остаток после деления. Здесь J%2 дает остаток после деления J на 2;

ЕХР = экспоненциальная функция.

Нет необходимости суммировать значения J от 1 до бесконечности. Уравнение сходится (обычно очень быстро) к определенному значению. После того как пре­дел достигнут (согласно допуску, установленному пользователем), нет необходи­мости продолжать суммирование значений.

Рассмотрим уравнение (4.01) на примере. Допустим, у нас есть 100 сделок, а значение статистики К-С равно 0,04:

J1 = (1 % 2) * 4 - 2 * ЕХР(-2 * 1^2 * (100^(1/2) * 0,04) л 2) =1*4-2* ЕХР(-2 * ^ 2 * (10 * 0,04)^ 2) = 2 * ЕХР(-2 * 1^2 * 0,^ 2) = 2*ЕХР(-2*1*0,16) = 2 * ЕХР(-0,32) = 2 * 0,726149 = 1,452298

Таким образом, нашим первым значением является 1,452298. Теперь прибавим следующее значение:

J2 = (2 % 2) * 4 - 2 * ЕХР(-2 * 2^ 2 * (100^ (1/2) * 0,04)^2) =0*4-2* ЕХР(-2 * 2^ 2 * (10 * 0,04)^ 2) = -2 * ЕХР(-2 * 2^ 2 * 0,4^ 2) = -2*ЕХР(-2*4*0,16) = -2*ЕХР(-1,28) = -2 * 0,2780373 = -0,5560746

Прибавив -0,5560746 к нашей текущей сумме 1,452298, мы получим новую теку­щую сумму 0,8962234. Затем снова увеличим J на 1, теперь оно будет равно 3, и решим уравнение. Получившееся значение прибавим к текущей сумме 0,8962234. Следует поступать таким образом и дальше, пока текущая сумма в пределах допуска не перестанет изменяться. В нашем примере предельное значе­ние будет равно 0,997. Этот ответ означает, что при 100 сделках и значении стати­стики К-С 0,04 мы можем быть уверены на 99,7%, что фактическое распределе­ние генерировано функцией теоретического распределения. Другими словами, мы можем быть на 99,7% уверены, что функция теоретического распределения представляет фактическое распределение. В данном случае это очень хороший уровень значимости.

Создание характеристической функции распределения

Нормальное распределение вероятности далеко не всегда является хорошей мо­делью распределения торговых прибылей и убытков. Более того, ни одно из рас­пространенных распределений вероятности не является идеальной моделью. По­этому мы должны сами создать функцию для моделирования распределения на­ших торговых прибылей и убытков.

Распределение изменений цены в общем случае относится к распределе­ниям Парето (см. приложение В). Распределение торговых P&L можно счи­тать трансформацией распределения цен. Эта трансформация является ре­зультатом торговых методов, когда трейдеры пытаются понизить свои убыт­ки и увеличить прибыли, следовательно, распределение торговых P&L можно отнести к распределениям Парето. Однако распределение, которое мы будем изу­чать, не является распределением Парето. Распределение Парето, как и все другие функции распределения, модели­рует определенное вероятностное явление. Оно моделирует распределение сумм независимых, идентично распределенных случайных переменных. Фун­кция распределения, которую мы будем изучать, не моделирует конкретное вероятностное явление. Она моделирует многие унимодальные функции рас­пределения. Поэтому она может повторить форму и плотность вероятности распределения Парето, а также любого другого унимодального распределения.

Теперь мы создадим эту функцию. Для начала рассмотрим следующее уравнение:

(4.02) Y=1/(X^ 2+1)

График этого уравнения — обычная колоколообразная кривая, симметрич­ная относительно оси Y, как показано на рисунке 4-2.

Таким образом, мы будем строить свои рассуждения, используя это общее уравнение. Переменную Х можно представить как число стандартных еди­ниц с каждой стороны от среднего, т.е. от оси Y. Мы можем использовать первый момент этого «распределения», расположение его среднего значения, добавив значение для изменения расположения на оси X. Уравнение изменится следую­щим образом:

(4.03) Y=1/(X-LOC^2+1),

где Y = ордината характеристической функции;

Х = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения.

Рисунок 4-2 LOC = 0 SCALE = I SKEW = 0 KURT = 2

Рисунок 4-3 LOC =0,5, SCALE = 1, SKEW = 0, KURT= 2

Таким образом, если бы мы хотели изменить расположение, передвинув график влево на 0,5 единицы, мы бы установили LOC на -0.5. Этот график изображен на рисунке 4-3.

Таким же образом, если бы мы хотели сместить кривую вправо, то исполь­зовали бы положительное значение для переменной LOC. LOC с нулевым значением не будет смещать график, как показано на рисунке 4-2.

Показатель в знаменателе влияет на эксцесс. До настоящего момента экс­цесс был равен 2, но мы можем изменить его, изменив значение показателя. Те­перь формулу нашей характеристической функции можно записать следующим образом:

(4.04) Y = 1 / ((X - LOC)^ KURT + 1),

где Y == ордината характеристической функции;

Х = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения;

KURT = переменная, задающая эксцесс, четвертый момент распределения.

Рисунки 4-4 и 4-5 показывают влияние эксцесса на нашу характеристическую функцию. Отметьте: чем выше показатель, тем более плосковерхое и тонкохвостое распределение (эксцесс меньше нормального), и чем меньше показа­тель, тем более острый верх и тем толще хвосты распределения (эксцесс боль­ше нормального). Чтобы не получить иррациональное число, когда KURT < 1, мы будем исполь­зовать абсолютное значение коэффициента в знаменателе. Это не повлияет на форму кривой. Таким образом, мы можем переписать уравнение (4.04) следую­щим образом:

  • Читать дальше
  • 1
  • ...
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: