Вход/Регистрация
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
вернуться

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

RFR = безрисковая ставка.

Неограниченные портфели

В этом разделе мы увидим, что можно поднять прибыли выше линии GCML, если снять ограничение на сумму весов. Давайте вернемся к геометрическим оп­тимальным портфелям. Если мы попробуем составить геометрический опти­мальный портфель из наших четырех рыночных систем — Toxico, Incubeast, LA Garb и сберегательного счета, то с помощью уравнений с (7.0ба) по (7.06г) най­дем, что он является таковым при Е, равном 0,1688965, и V, равном 0,1688965. Среднее геометрическое такого портфеля будет равно 1,094268, а состав портфе­ля будет иметь вид:

Toxico 18,89891%

Incubeast 19,50386%

LA Garb 58,58387%

Сберегательный счет 0,03014%

При решении уравнений с (7.06а) по (7.06г) необходимо использовать метод ите­раций, т.е. выбирать тестируемое значение для Е и решать матрицу для этого Е. Если полученное значение дисперсии больше значения Е, это означает, что тес­тируемое значение Е слишком высокое и в следующей попытке следует его пони­зить. Вы можете определить дисперсию портфеля, используя одно из уравнений с (6.06а) по (6.06г). Повторяйте процесс, пока не будет выполняться любое из ра­венств с (7.06а) по (7.06г). Таким образом вы получите геометрический оптималь­ный портфель (отметьте, что все рассмотренные портфели на эффективной гра­нице AHPR или на эффективной границе GHPR определяются с учетом того, что сумма весов равна 100%, или 1,00). Вспомните уравнение (6.10), используемое в первоначальной расширенной матрице для поиска оптимальных весов портфеля, уравнение отражает тот факт, что сумма весов равна 1:

где N = количество ценных бумаг, составляющих портфель;

X. = процентный вес ценной бумаги L Уравнение также можно представить следующим образом:

Мы можем найти неограниченный оптимальный портфель, если левую часть этого уравнения приравнять к числу больше 1. Для этого добавим еще одну рыночную систему, называемую беспроцентным вкладом (non-interest-bearing cash (NIC)), в первоначальную расширенную матрицу Данная рыночная система будет иметь дневное среднее арифметическое HPR= 1,0, а стандартное отклонение, диспер­сию и ковариацию дневных HPR равными 0. Коэффициенты корреляции NIC с любой другой рыночной системой всегда равны 0.

Теперь установим ограничение суммы весов на некоторое произвольное чис­ло, большее единицы. Хорошим первоначальным значением будет количество используемых рыночных систем (без NIC), умноженное на три. Так как мы имеем 4 рыночные системы (не учитывая NIC), то ограничим сумму весов 4*3=12.

Отметьте, что мы просто устанавливаем ограничение на произвольное значе­ние, большее единицы. Разность между этим выбранным значением и суммой полученных весов будет весом системы NIC.

На самом деле, мы не собираемся инвестировать в NIC. Это просто дополни­тельная переменная, с помощью которой мы создадим матрицу для получения

неограниченных весов рыночных систем. Теперь возьмем параметры наших че­тырех рыночных систем из главы 6 и добавим NIC:

Ковариации рыночных систем, включая NIC, будут следующими:

Добавив NIC, мы получим 5 рыночных систем, и обобщенная форма первона­чальной расширенной матрицы будет выглядеть следующим образом:

неограниченных весов рыночных систем. Теперь возьмем параметры наших че­тырех рыночных систем из главы 6 и добавим NIC:

Инвестиция Ожидаемая прибыль в виде HPR Ожидаемое стандартное отклонение прибыли
Toxico 1,095 0,316227766
Incubeast Corp. 1,13 0,5
LA Garb 1,21 0,632455532
Сберегательный счет 1,085 0
Беспроцентный вклад 1,00 0

Ковариации рыночных систем, включая NIC, будут следующими:

Т I L S N
Т 0,1 – 0,0237 0,01 0 0
I – 0,0237 0,25 0,079 0 0
L 0,01 0,079 0,4 0 0
S 0 0 0 0 0
N 0 0 0 0 0

Добавив NIC, мы получим 5 рыночных систем, и обобщенная форма первона­чальной расширенной матрицы будет выглядеть следующим образом:

После включения NIC первоначальная расширенная матрица приобретет вид:

Отметьте, что значение на пересечении столбца ответов и второй строки, т.е. огра­ничение суммы весов, равно количеству рыночных систем (не включая NIC), ум­ноженному на 3. С помощью элементарных преобразований, описанных в главе 6, получим еди­ничную матрицу. Теперь вы можете определить эффективную границу AHPR и эф­фективную границу GHPR для портфеля с неограниченными весами. Эффективная граница AHPR для портфеля с неограниченными весами соответствует использова­нию рычага (заемного капитала) без реинвестирования.

  • Читать дальше
  • 1
  • ...
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: