Шрифт:
Глутаминовая кислота принимает участие в синтезе АМФ-аденозинмонофосфата, который превращается в дальнейшем в ц-АМФ — циклический аденозинмонофасфат. Многие нейромедиаторы ( катехоламины) и гормоны ( инсулин) не проникают внутрь клетки, а воздействуют на поверхностные рецепторы наружной клеточной мембраны. Обмен веществ в клетке изменяется благодаря существованию внутриклеточного посредника гормонального сигнала ц-АМФ. Воздействие на рецепторы запускает синтез ц-АМФ, а уже ц-АМФ запускает цепь обменных реакций внутри клетки. При больших физических нагрузках организм приспосабливается вначале с помощью выброса в кровь большего количества гормонов и нейромедиаторов. В дальнейшем при повторных физических нагрузках по мере развития тренированности организм начинает приспосабливаться и реагирует на нагрузку не столько выбросом гормонов и медиаторов, сколько увеличением внутриклеточного синтеза ц-АМФ. Это более экономичная реакция, она помогает «экономить» гормональные и медиаторные резервы организма, сберегает их от истощения. Таким образом, сложным путем превращения глутаминовая кислота повышает чувствительность клеток к гормональным и медиаторным сигналам. Это помогает организму более точно и более адекватно реагировать на большие физические нагрузки и более быстро к ним приспосабливаться.
Поскольку уж речь зашла о ц-АМФ, то этот внутриклеточный посредник гормонального сигнала косвенным путем увеличивает чувствительность клеток и к половым гормонам, одновременно стимулирует выброс в кровь половых гормонов и повышение их содержания в мышечной ткани. Мышечный анаболизм, таким образом, значительно усиливается.
Когда еще не существовало такого вида спорта, как культуризм, глутаминовая кислота в качестве анаболизирующего фактора применялась для лечения наследственных мышечных дистрофий.
Глутаминовая кислота способна служить источником в организме глуанидинмонофосфата (ГМФ), который превращается затем в организме в циклический глуанидинмонофосфат (ц-ГМФ). ц-ГМФ, подобно ц-АМФ, является внутриклеточным посредником гормональных и медиаторных сигналов, только уже других. Так, например, ц-ГМФ является внутриклеточным посредником действия на мышечные и другие тоже клетки ацетилхолина. Ацетилхолин является нейромедиатором в тех нервных клетках, которые составляют двигательные центры, проводят двигательные импульсы и передают их непосредственно на мышцу. Повышение чувствительности нервных и мышечных клеток к ацетилхолину значительно увеличивает мышечную силу и анаболические процессы в самой мышце. Ацетилхолин является также медиатором нервного возбуждения в парасимпатической нервной системе [15] . Естественно, что повышение чувствительности нейронов парасимпатической нервной системы к ацетилхолину значительно увеличивает ее активность. Одна из основных функций парасимпатической нервной системы — это усиление анаболических процессов [16] . Это еще один механизм анаболического действия глутаминовой кислоты. Кстати говоря, глутаминовая кислота усиливает синтез в нервных клетках и самого ацетилхолина, но незначительно.
15
Парасимпатическая нервная система — часть вегетативной нервной системы. Второй частью вегетативной нервной системы является симпатическая нервная система. В организме вегетативная нервная система иннервирует, все внутренние органы и регулирует обмен веществ в них.
16
В отличие от парасимпатической симпатическая нервная система усиливает в организме процессы катаболизма.
Энергизирующее действие глутаминовой кислоты отчасти связано с тем, что она принимает участие в синтезе НАД (никотинамидадениндинуклеотид). НАД — специфический фермент, участвующий в процессах биологического окисления, протекающих в митохондриях. В дыхательной цепи (цепи окислительно- восстановительных реакций) НАД является переносчиком электронов и ионов водорода.
Глутаминовая кислота способна превращаться в незаменимую аминокислоту триптофан. При недостатке в организме никотиновой кислоты (витамин РР) триптофан превращается в организме в никотиновую кислоту и предотвращает развитие авитаминоза. Из триптофана синтезируется серотонин — один из тормозных нейромедиаторов центральной нервной системы. Серотонин обладает анаболическим действием, усиливает синтез белка в организме и, замедляя его распад, серотонин активизирует кору надпочечников и выброс в кровь глюкокортикоидных гормонов во время интенсивной физической работы.
Глутаминовая кислота несколько повышает проницаемость клеток для ионов калия, способствуя накоплению калия внутри клетки. Для скелетных мышц это имеет особое значение, т. к. мышечное сокращение требует достаточно высокого содержания калия в клетках.
Натриевая соль глутаминовой кислоты обладает вкусом мяса, мясного бульона. В некоторых странах она в огромных количествах производится в качестве приправы (Япония). Применение глутамината натрия для придания изделиям мясного вкуса с каждым годом растет. В настоящее время его уже почти во всех странах добавляют в колбасы, бульонные кубики, соусы и т. д.
Для медицинского применения глутаминовая кислота выпускается в таблетках по 0,25 г. Еще десять лет тому назад глутаминовую кислоту назначали не более 10 г в сутки при особо тяжелых отравлениях. Сейчас общепринятые дозировки возросли до 20–25 г в сутки. В спортивной практике глутаминовую кислоту используют в еще больших дозах: по 30 г в сутки и еще выше. Она не обладает токсичностью, ее побочные действия, которые теоретически могут иметь место на практике, никогда не встречаются. Такие большие дозы могут показаться вовсе не большими, если мы учтем, что каждые 100 г белковой пищи содержат 25 г глутаминовой кислоты. Если спортсмен съедает в сутки 200 г животного белка, то с этим белком он получает не менее 50 г глутаминовой кислоты. А ведь есть спортсмены высокой квалификации, которые съедают до 500 г белка в сутки, получая с одной только пищей 125 г глутаминовой кислоты. Если мы раскроем аптечную упаковку с таблетками глутаминовой кислоты, то увидим там инструкцию, согласно которой необходимо принимать глутаминовую кислоту по 1 таблетке 3 р. в день (0,75 г в сутки). Это было бы смешно, если не было бы так печально. Даже в некоторых литературных изданиях, посвященных спорту, еще можно встретить рекомендации для тяжелоатлетов употреблять глутаминовую кислоту по 2 таблетки 3 раза в день (1,5 г в сутки). Подумать только! Атлеты весом по 120 кг, съедающие по несколько сотен граммов белка и с одной только пищей получающие до 100 г глутаминовой кислоты в сутки, «с целью улучшения аминокислотного обмена» должны принимать ее в таблетках по 1,5 г в сутки! Это нелепо.
Настоящие дозировки чистой глутаминовой кислоты должны быть соизмеримы с пищевым и сильно не отставать от них. Медицинские дозировки глутаминовой кислоты, которые существуют неизменно с 1962 г., должны быть, конечно же, пересмотрены в сторону увеличения.
Аспарагиновая кислота
Аспарагиновая кислота не имеет в организме такого большого удельного веса, как глутаминовая, хотя, впрочем, и все остальные существующие заменимые аминокислоты, такого большого удельного веса в организме не имеют.
Помимо перераспределения азота в организме, наряду с глутаминовой кислотой, аспарагиновая кислота принимает участие в обезвреживании аммиака.
Во-первых, аспарагиновая кислота способна присоединять к себе токсичную молекулу аммиака, превращаясь в нетоксичный аспарагин. И, во-вторых, аспарагиновая кислота способствует превращению аммиака в нетоксичную мочевину, которая выводится затем из организма.
Аспарагиновая кислота способна вступать в реакции глюконеогенеза и превращаться в печени в глюкозу, что имеет большое значение при объемных физических нагрузках.