Вход/Регистрация
Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
вернуться

Брюков Владимир Георгиевич

Шрифт:

Коэффициент неравенства Тейла, фактически являющийся индексом, в этой таблице равен 0,0175, т. е. его значение довольно близко подходит к нулю, что говорит о хорошем качестве предсказания. При этом доля систематической ошибки в предсказаниях равна 0 или 0 %, в то время как доля вариации равна 0,0012, или 0,12 %, а доля ковариации — 0,9988, или 99,88 %.

Судя по табл. 3.6, с помощью двухфакторного уравнения регрессии со свободным членом нам удалось получить довольно качественную прогностическую модель. Тем не менее точность этой авторегрессионной модели можно повысить, причем довольно существенно.

Контрольные вопросы и задания

1. Какие уравнения называются уравнениями авторегрессии? Являются ли уравнения авторегрессии частным случаем уравнений регрессии? В чем преимущество использования в прогнозах лаговой переменной с точки зрения теории эффективного рынка?

2. Какая предпосылка метода наименьших квадратов (МНК) не соблюдается в уравнениях регрессии? В каких случаях с помощью уравнения авторегрессии можно получать состоятельные и эффективные оценки?

3. Что означают англоязычные аббревиатуры AR и ARMA? Чем отличается модель AR от модели ARMA? Какие переменные входят в модель ARMA(2; 1)?

4. Для чего необходима коррелограмма? В чем отличие автокорреляции от частной автокорреляционной функции? Что измеряет коэффициент автокорреляции уровней 1-го порядка?

5. Как производится идентификации моделей AR(p) и ARMA(p, q) с помощью коррелограммы? Как при этом используются автокорреляция и частная автокорреляция?

6. Почему критерий Дарбина — Уотсона нельзя использовать для тестирования уравнений авторегресии на наличие автокорреляции в остатках? Какой тест на наличие автокорелляции в остатках в уравнениях авторегрессии используется в EViews? Какой лаг нужно задать в этом тесте при тестировании уравнения авторегрессии 2-го порядка?

7. Как находится квадратный корень средней ошибки предсказания? Почему для нахождения средней ошибки приходится использовать их модульные значения? Как находится средняя ошибка по модулю (%)? Для чего используется коэффициент неравенства Тейла? Какое значение коэффициента неравенства Тейла считается идеальным для статистической модели?

Глава 4

Подбор адекватного уравнения авторегрессии и составление точечных и интервальных прогнозов по курсу доллара

4.1. Повышение статистической значимости коэффициентов в уравнении авторегрессии

Одним из способов повышения точности статистической модели является увеличение количества переменных, включаемых в уравнение регрессии. Однако в табл. 3.1 «Коррелограмма исходных уровней временного ряда USDollar с величиной лага от 1 до 36» хорошо видно, что коэффициент частной автокорреляции уже на лаге в три месяца становится близким к нулю. Отсюда следует вывод, что нет никакого смысла добавлять в уравнение авторегрессии 2-го порядка AR(2) со свободным членом факторную лаговую переменную с лагом в три месяца и более.

Вместе с тем вывод итогов как в Excel, так и в EViews для этого уравнения свидетельствует, что величина P– значений включенных в него коэффициентов далеко не одинакова (см. табл. 3.2 и 3.3). Так, Р– значения для коэффициентов регрессии факторных переменных USDollar(-l) и USDollar(-2) практически равны нулю, что свидетельствует об их статистической значимости с 99 %-ным уровнем надежности. А вот Р– значение для коэффициента свободного члена (константы) этого уравнения регрессии равно 0,037226, что свидетельствует о его статистической значимости лишь с 95 %-ным уровнем надежности (точнее сказать, с 96,28 %-ным уровнем надежности: 100 %-3,72 %).

Следовательно, чтобы повысить точность наших прогнозов, мы попробуем решить уравнение регрессии, исключив из формулы (3.14) статистически менее значимый свободный член. С этой целью необходимо воспользоваться алгоритмом действий № 6 «Как решить уравнение регрессии в EViews» (см. главу 3), но при выборе параметров оцениваемой статистической модели (см. шаг 3 этого алгоритма) мини-окно EQUATION SPECIFICATION нужно заполнить следующим образом:

USDollar USDollar(-l) USDollar(-2). (4.1)

Фактически в буквенной форме формула (4.1) приобретет следующий вид:

USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2). (4.2)

Причем, введя спецификацию (4.1) в EViews, мы тем самым даем программе задание оценить коэффициенты а и b из формулы (4.2). В результате EViews выдает итоги, которые заносятся в табл. 4.1. На основе данных этой таблицы мы получаем уравнение авторегрессии 2-го порядка AR(2) без константы со следующими параметрами:

  • Читать дальше
  • 1
  • ...
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: