Вход/Регистрация
Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
вернуться

Брюков Владимир Георгиевич

Шрифт:

Коэффициент эксцесса можно назвать индикатором «крутизны» распределения статистического ряда. Коэффициент эксцесса для нормального распределения равен 3. В том случае, когда этот коэффициент больше 3, это является показателем «островершинного» распределения, а если меньше 3, это свидетельствует о «плосковершинном» распределении статистического ряда. Коэффициент эксцесса для остатков в EViews вычислен по следующей формуле:

где расчетное стандартное отклонение а находится таким же образом, как и в формуле (4.10).

В нашем случае коэффициент эксцесса имеет следующее значение:

Поскольку коэффициент эксцесса равен 45,83162 (см. табл. 4.5), можно сделать вывод, что распределение остатков является «островершинным». По сути это означает, что в этом распределении имеется ярко выраженное ядро плотности распределения, внутри которого диапазон колебаний величины остатков незначителен, и рассеянное «гало», где разброс колебаний величины остатков весьма значителен. С точки зрения предсказания курса доллара такой характер распределения позволяет задавать, например, при 80 %-ном уровне надежности, не слишком широкие прогностические интервалы. Правда, если инвестор хочет иметь прогноз с более высоким 99 %-ным уровнем надежности, то из-за рассеянного «гало» ширина этих интервалов начинает резко увеличиваться.

В EViews есть возможность посмотреть в графическом виде оценку ядра плотности распределения с помощью опций DISTRIBUTION/ KERNEL DENSITY GRAPHS… (распределение/графики ядра плотности распределения). В появившемся мини-окне KERNEL DENSITY (ядро плотности распределения) по умолчанию устанавливается опция EPANECHNICOV, а всего их здесь семь и отличаются они друг от друга по используемому алгоритму сглаживания (рис. 4.2).

Дело в том, что в отличие от обычной гистограммы (столбчатая диаграмма, высота каждого прямоугольника которой пропорциональна частоте распределения в заданном интервале значений) график ядра плотности распределения создается с помощью сглаживания, в ходе которого различным наблюдениям присваиваются определенные веса. При этом соблюдается следующий принцип: чем дальше отдельное наблюдение от оцениваемой «точки», тем более легкий вес ему присваивается. В результате получается диаграмма, приведенная на рис. 4.3, на которой хорошо виден «островершинный» характер ядра плотности распределения остатков.

Для большей наглядности ядро плотности распределения остатков можно сравнить с нормальным распределением, имеющим стандартное ядро плотности распределения (рис. 4.4). С этой целью мы получили в Excel нормальное распределение, используя опции АНАЛИЗ ДАННЫХ/ГЕНЕРАЦИЯ СЛУЧАЙНЫХ ЧИСЕЛ. Сравнив рис. 4.3 и 4.4, легко заметить, что у нормального распределения, во-первых, вершина гораздо более плоская; во-вторых, ядро плотности распределения значительно шире; в-третьих, рассеянное «гало» не столь широко разбросано по краям.

Продолжим анализ характера распределения остатков и с этой целью посмотрим оценку значимости критерия Жарка — Бера, представленную в табл. 4.5. При этом следует иметь в виду, что величина критерия Жарка — Бера служит для проверки нулевой гипотезы о нормальном распределении изучаемого статистического ряда. Тестовая статистика в этом случае измеряет разницу между нормальным распределением и коэффициентами асимметрии и эксцесса, вычисленными для данного статистического ряда. Критерий Жарка — Бера находится по следующей формуле:

где N— количество наблюдений;

А — коэффициент асимметрии;

К— коэффициент эксцесса;

k — количество параметров, использованных для создания данного временнoго ряда.

После этого значение теста Жарка — Бера сравнивают с распределением 2 (хи-квадрат) с двумя степенями свободы. В том случае, если критерий Жарка — Бера > 2крипт, то делается вывод о неслучайном характере распределения, а следовательно, нулевая гипотеза о нормальном распределении опровергается. В нашем случае значение теста Жарка — Бера равно 17147,64, а следовательно, если сравнить с соответствующим табличным значением 2крипт001,2 = 9,21, то рассчитанный нами критерий Жарка — Бера существенно выше последнего.

Впрочем, нам не обязательно заглядывать в таблицу. Чтобы вычислить значимость критерия Жарка — Бера в Excel, достаточно воспользоваться функцией ХИ2РАСП (17147,64; 2) = 0. Ав EViews значимость (Probability) критерия Жарка — Бера, равная нулю, выдается автоматически (см. табл. 4.4).

Поскольку при значимости критерия Жарка — Бера (Probability) < 0,05 нулевая гипотеза о нормальном распределении опровергается с 95 % уровнем надежности, то, следовательно, в нашем случае мы вынуждены отвергнуть гипотезу о нормальном распределении остатков.

В EViews имеется и ряд других тестов, с помощью которых можно провести дополнительную проверку нулевой гипотезы о нормальном распределении. В частности, если в файле RESID воспользоваться опциями VIEW/DISTRIBUTION/EMPIRICAL DISTRIBUTION TESTS… (смотреть/распределение/тесты на проверку характера эмпирического распределения), то мы получим результаты проверки нулевой гипотезы о нормальном распределении остатков с помощью соответствующих тестов Лиллиефорса (Lilliefors), Крамера фон Мизеса (Cramer von Mises), Уотсона (Watson) и Андерсона — Дарлинга (Anderson — Darling). Результаты тестирования занесены в табл. 4.6. Поскольку значимость (Probability) критериев по всем четырем тестам равна нулю, то нулевая гипотеза о нормальном распределении остатков опровергается.

  • Читать дальше
  • 1
  • ...
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: