Шрифт:
Для оценки результатов теста EViews сообщает две статистики: величины F– критерия и LR– статистики. Расчет F– критерия основан на сравнении суммы квадратов остатков, полученных для моделей, основанных на всей и неполной выборках (см. формулу (5.6)), a LR-статистики — на сравнении соотношения ограниченного и неограниченного максимума логарифма правдоподобия. При этом в случае если уровень значимости F– критерия и LR– статистики меньше 0,05, нулевая гипотеза отвергается. Некоторые математические подробности по этому тесту приводятся ниже.
Шаг 2. Проведение в EViews теста Чоу на точность прогноза
Чтобы в EViews получить результаты теста Чоу на точность прогноза, необходимо выбрать следующие опции: VIEW/STABILITY TESTS/CHOW FORECAST TEST… (посмотреть/тесты на стабильность/тест Чоу на точность прогноза). После чего в появившемся диалоговом мини-окне CHOW TESTS мы указываем прогнозируемое наблюдение — 98m08, т. е. август 1998 г. (рис. 5.9). Таким образом, все остальные наблюдения у нас попадут в неполную выборку охватывающую период с июня 1992 г. по июль 1998 г.
Если в диалоговом мини-окне CHOWTESTS мы щелкнем кнопку ОК, то получим готовый вывод данных с результатами теста Чоу на точность прогноза. Эти данные поместим в табл. 5.13, из которой следует, что уровень значимости как F– критерия, так LR– статистики у нас оказался равен нулю. Следовательно, нулевая гипотеза о структурной стабильности во временном ряде отвергается и делается вывод о значимости структурных изменений во временном ряде, произошедших в августе 1998 г. Таким образом, вывод о наличии структурных изменений зависит не только от этих изменений, но и от объема взятой нами выборки.
Расчет F– критерия для теста Чоу на точность прогноза построен на сравнении суммы квадратов остатков, полученных для двух моделей, основанных соответственно на всей и неполной выборках.
При этом вычисления делаются по следующей формуле:
где SS1 — сумма квадратов остатков, полученных по уравнению регрессии, построенному на всей выборке;
SS2 — сумма квадратов остатков, полученных по уравнению регрессии, построенному на неполной выборке;
Т1 — количество наблюдений в неполной выборке;
Т2 — количество прогнозируемых наблюдений, т. е. наблюдений, не вошедших в неполную выборку;
k — количество параметров в уравнении регрессии.
Таким образом, в нашем случае фактический F– критерий в тесте Чоу на точность прогноза относительно прогнозируемого наблюдения — августа 1998 г. будет иметь следующее значение:
Далее находим уровень значимости Fфакт с помощью функции в Excel РРАСП(200,28; 1; 70) = 0. Поскольку уровень значимости Fфакт равен нулю, то, следовательно, нулевая гипотеза отвергается.
Как мы уже говорили ранее, LR– статистика этого теста основана на сравнении соотношения ограниченного и неограниченного максимума логарифма правдоподобия. Причем как ограниченный, так и неограниченный логарифм правдоподобия находятся путем оценки всей выборки наблюдений. Однако при расчете ограниченного логарифма правдоподобия используется первоначальный набор независимых переменных, в то время как для нахождения неограниченного логарифма правдоподобия в первоначальный набор регрессоров добавляют еще фиктивную переменную, которая равна единице — для прогнозируемых наблюдений выборки и равна нулю — для остальных наблюдений выборки. Следовательно, в нашем случае фиктивная переменная равна единице лишь для августа 1998 г.
Следует иметь в виду, что при нулевой гипотезе об отсутствии структурных изменений LR– статистика имеет асимптотическое 2 (хи-квадрат) распределение со степенями свободы, равными количеству прогнозируемых наблюдений. В том случае, если уровень значимости LR– статистики оказывается меньше 0,05, нулевая гипотеза о структурной стабильности отвергается.
Таким образом, тесты Чоу на структурную стабильность и на точность прогноза помогают анализировать устойчивость временного ряда. При этом тест на структурную стабильность, на наш взгляд, лучше подходит для ретроспективного анализа устойчивости статистической модели за весь период наблюдений, а тест на точность прогноза — для анализа ее стабильности относительно последнего наблюдения.
Причем в том случае, когда тест на точность прогноза свидетельствует о структурной нестабильности, возникшей в модели в результате резкого изменения курса доллара в последнем наблюдении, то для устранения смещения в коэффициентах регрессии (и (или) величины константы) в уравнение можно ввести фиктивную переменную. Приравняем к единице фиктивную переменную для последнего наблюдения, а все остальные наблюдения приравняем к нулю, и тем самым прогностической моделью будет аппроксимирован последний рост без изменения коэффициентов регрессии и константы (свободного члена) уравнения. Еще более надежным способом получения точного прогноза в ситуации, когда тест Чоу на точность прогноза показал структурную нестабильность, является отказ от уравнения авторегрессии с нестационарной ARMА-структурой и переход к уравнению авторегрессии со стационарной ARMA-структурой, поскольку внешние шоки в гораздо меньшей степени влияют на коэффициенты регрессии и константу последнего уравнения. О том, как построить прогностическую модель со стационарной ARMA-структурой, мы будем говорить в главе 6.