Вход/Регистрация
Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
вернуться

Брюков Владимир Георгиевич

Шрифт:

5. В столбце ЗНАЧИМОСТЬ F дается уровень значимости, который соответствует величине фактического F– критерия Фишера, вычисленного для этого уравнения регрессии. В нашем случае значимость Fфакт практически равна нулю, т. е. Fфакт больше Fтабл (значения F– критерия Фишера при уровне значимости 0,05 или 5 % можно найти в любом учебнике по статистике) при 1 %-ном и 5 %-ном уровне значимости. Отсюда можно сделать вывод о статистической значимости уравнения регрессии, поскольку связь между включенными в него факторами в этом случае доказана.

В тех случаях, когда значимость F бывает больше, например, 0,01, но меньше 0,05, то тогда делается вывод, что Fфакт меньшеFтабл при 1 %-ном уровне значимости, но больше Fтабл при 5 %-ном уровне значимости. Следовательно, в этой ситуации нулевая гипотеза об отсутствии связи между результативным признаком и факторами, включенными в уравнение регрессии, на 1 %-ном уровне значимости не отклоняется, но отклоняется на 5 %-ном уровне значимости. Таким образом, в этом случае каждый исследователь должен сам решить, считать ли 5 %-ный уровень значимости F– критерия достаточным для того, чтобы сделать вывод о статистической значимости уравнения регрессии. При этом следует иметь в виду, что если значимость F– критерия выше 0,05, т. е. Fфакт меньше Fтабл при 5 %-ном уровне значимости, то в этой ситуации уравнение регрессии, как правило, считается статистически незначимым.

В таблице 2.4 сгенерированы коэффициенты уравнения регрессии и оценки их статистической значимости.

1. В столбце КОЭФФИЦИЕНТЫ представлены коэффициенты уравнения регрессии. На пересечении этого столбца со строкой Y– ПЕРЕСЕЧЕНИЕ дан свободный член, который в формуле линейного уравнения регрессии (2.2) обозначен символом а = 1,995805.

Во второй строке этого столбца, обозначенной как Time (независимая переменная — порядковый номер месяца), сгенерирован коэффициент уравнения регрессии, который в формуле (2.2) представлен символом b = 0,162166.

Таким образом, данные, представленные в столбце Коэффициенты, дают нам возможность составить путем подстановки соответствующих цифр в формулу (2.2) следующее уравнение линейной парной регрессии:

Y = 0,1622Х + 1,9958,

где независимая переменная X означает порядковый номер месяца (июнь 1992 г. — 1, а апрель 2010 г. — 215);

зависимая переменная Y — ежемесячное значение курса доллара.

При этом экономическая интерпретация этого линейного уравнения следующая: в период с июня 1992 г. по апрель 2010 г. курс доллара к рублю ежемесячно рос со средней скоростью 16,22 коп. при исходном уровне временного ряда в размере 1 руб. 99,58 коп. В свою очередь геометрическая интерпретация этого линейного уравнения следующая: свободный член уравнения 1,9958 показывает точку пересечения линии тренда с осью Y, а коэффициент уравнения 0,1622х равен углу наклона линии тренда к оси Х(см. рис. 2.5).

2. В столбце СТАНДАРТНАЯ ОШИБКА сгенерированы стандартные ошибки свободного члена и коэффициента регрессии, значения которых даны во втором столбце табл. 2.4. При этом стандартная ошибка свободного члена уравнения регрессии находится по следующей формуле:

где MSост = Dост — остаточная дисперсия, приходящаяся на одну степень свободы.

Для нашего случая стандартная ошибка свободного члена уравнения регрессии равна

В свою очередь стандартная ошибка коэффициента регрессии оценивается по следующей формуле:

Для нашего случая стандартная ошибка коэффициента регрессии имеет следующее значение:

3. В столбце t– СТАТИСТИКА даны расчетные значения /-критерия. При этом для свободного члена /-статистика вычисляется по формуле

где а — свободный член уравнения.

В нашем случае t– статистика находится следующим образом:

Для коэффициента регрессии t– статистика рассчитывается по формуле

где b — коэффициент регрессии.

Тогда Z-статистика находится следующим образом:

4. В столбце Р– ЗНАЧЕНИЕ сгенерированы уровни значимости, соответствующие значениям t– статистики.

В Excel Р– значение находится с помощью следующей функции:

СТЬЮДРАСП (X = tст; df= п- к — 1; хвосты = 2),

где в опции X дается t– статистика, для которой нужно вычислить двустороннее распределение;

в опции df — число степеней свободы; в опции хвосты — цифра 2 для двустороннего распределения.

Для свободного члена уравнения эта функция приобретает следующий вид:

  • Читать дальше
  • 1
  • ...
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: