Вход/Регистрация
Фундаментальные алгоритмы и структуры данных в Delphi
вернуться

Бакнелл Джулиан М.

Шрифт:

property Count : integer read FCount;

property Name : TtdNameString read FName write FName;

end;

Как обычно при использовании структур данных, рассмотренных в этой книге, мы убеждаемся, что класс владеет содержащимися в нем данными и, следовательно, может их при необходимости освобождать, или же предполагаем, что обработка данных выполняется из какого-то другого места, и в этом случае дерево не будет освобождать какие-либо данные. Поэтому конструктор Create принимает параметр, определяющий процедуру удаления элемента данных. Если этот параметр является нулевым, дерево не владеет данными и, следовательно, не будет их удалять. Если параметр aDisposeItem является адресом процедуры, эта процедура будет вызываться в каждом случае, когда требуется освободить элемент.

Листинг 8.10. Методы Create и Destroy класса бинарного дерева

constructor TtdBinaryTree.Create(aDisposeItem : TtdDisposeProc);

begin

inherited Create;

FDispose := aDisposeItem;

{проверить, доступен ли диспетчер узлов}

if (BTNodeManager = nil) then

BTNodeManager := TtdNodeManager.Create(sizeof(TtdBinTreeNode));

{выделить заглавный узел; со временем корневой узел дерева станет его левым дочерним узлом}

FHead := BTNodeManager.AllocNodeClear;

end;

destructor TtdBinaryTree.Destroy;

begin

Clear;

BTNodeManager.FreeNode(FHead);

inherited Destroy;

end;

Метод Create убеждается, что диспетчер узлов бинарного дерева активен, а затем выделяет фиктивный заглавный узел. Именно на месте левого дочернего узла этого узла находится корневой узел дерева. Метод Destroy убеждается, что дерево очищено (т.е. все узлы в дереве освобождены), а затем освобождает фиктивный заглавный узел.

Следующий метод, который мы рассмотрим - метод Clear. В данном случае требуется удалить все узлы дерева. Как упоминалось ранее, это выполняется за счет применения обхода всего дерева в глубину. В данном случае мы воспользовались нерекурсивным обходом, поскольку он выполняется быстрее.

Листинг 8.11. Очистка бинарного дерева

procedure TtdBinaryTree.Clear;

var

Stack : TtdStack;

Node : PtdBinTreeNode;

begin

if (FCount = 0) then

Exit;

{создать стек}

Stack := TtdStack.Create(nil);

try

{затолкнуть корневой узел}

Stack.Push(FHead^.btChild[ctLeft]);

{продолжать процесс до тех пор, пока стек не опустеет}

while not Stack.IsEmpty do

begin

{извлечь узел в начале очереди}

Node := Stack.Pop;

{если он является нулевым, вытолкнуть из стека следующий узел и освободить его}

if (Node = nil) then begin

Node := Stack.Pop;

if Assigned(FDispose) then

FDispose(Node^.btData);

BTNodeManager.FreeNode(Node);

end

{в противном случае дочерние узлы этого узла в стек еще не заталкивались}

else begin

{затолкнуть узел, а за ним - нулевой указатель}

Stack.Push(Node);

Stack.Push(nil);

{затолкнуть правый дочерний узел, если он не нулевой}

if (Node^.btChild[ctRight]<> nil) then

Stack.Push(Node^.btChild[ctRight]);

{затолкнуть левый дочерний узел, если он не нулевой}

if (Node^.btChild[ctLeft] <> nil) then

Stack.Push(Node^.btChild[ctLeft]);

end;

end;

finally

{уничтожить стек}

Stack.Free;

end;

{внести изменения, отражающие то, что дерево пусто}

FCount := 0;

FHead^.btChild[ctLeft] nil;

end;

Если сравнить этот код с кодом общего метода нерекурсивного обхода, приведенным в листинге 8.7, то несложно заметить, что они во многом совпадают. Единственное реальное различие состоит в том, что в коде отсутствует какая-либо процедура действия - мы уже знаем, что будет делаться с каждым узлом.

Метод Traverse действует всего лишь в качестве контейнера различных внутренних методов обхода, большинство из которых мы уже рассмотрели. Остальные методы представляют собой соответствующие рекурсивные методы обхода дерева.

Листинг 8.12. Обход в классе бинарного дерева

function TtdBinaryTree.btRecInOrder(aNode : PtdBinTreeNode;

aAction : TtdVisitProc; aExtraData : pointer): PtdBinTreeNode;

var

StopNow : boolean;

begin

Result := nil;

  • Читать дальше
  • 1
  • ...
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: