Шрифт:
Насколько же может «потяжелеть» человек без существенной опасности для жизни? Это зависит от длительности нагрузки. Если она продолжается доли секунды, то человек способен выдержать восьми-десятикратный вес, т.е. перегрузку в 7–9 g. В продолжение десяти секунд летчик может выдержать перегрузку в 3–5 g. Космонавтов интересует вопрос о перегрузке, которую человек способен выносить десятки минут, а может быть, и часы. В таких случаях перегрузка, вероятно, должна быть гораздо меньше.
Вычислим радиусы петель, которые самолет может описать без опасности для летчика, на различных скоростях. Возьмем среднюю цифру 4 g. Это – значение ускорения, т.е. v 2/ R= 4 gи R= v 2/4 g. При скорости 360 км/ч = 100 м/с радиус петли будет 250 м; если же скорость будет в 4 раза больше, т.е. 1440 км/ч (а эти скорости уже превзойдены современными реактивными самолетами), радиус петли должен быть увеличен в 16 раз. Минимальный радиус петли становится равным 4 км.
Не оставим без внимания и более скромный вид транспорта – велосипед. Все видели, как наклоняется велосипедист при повороте. Предложим велосипедисту описывать окружность радиуса Rсо скоростью v, т.е. двигаться с ускорением v 2/ R, направленным к центру. Тогда, кроме силы земного притяжения, на велосипедиста будет действовать дополнительная, центробежная сила, направленная по горизонтали от центра окружности. На рис. 21 показаны эти силы и их сумма. Ясно, что велосипедист должен держаться «вертикально», иначе он упадет. Но… его вертикаль не совпадает с земной. Из рисунка видно, что векторы mv 2/ Rи mg– катеты прямоугольного треугольника. Отношение катета, противолежащего углу , к прилежащему называется в тригонометрии тангенсом угла .
У нас tg = v 2/( Rg); масса сократилась в полном согласии с принципом эквивалентности. Значит, угол наклона велосипедиста не зависит от его массы – и толстому седоку и худому надо наклоняться одинаково. Формула и изображенный на рисунке треугольник показывают зависимость наклона от скорости движения (возрастает с увеличением) и от радиуса окружности (возрастает с уменьшением). Мы выяснили, что вертикаль велосипедиста не совпадает с земной вертикалью. Что же он будет чувствовать? Придется рис. 21 повернуть. Дорога теперь выглядит как склон горы (рис. 22, а), и нам становится ясным, что при недостаточной силе трения между шинами и дорожным покрытием (влажный асфальт) велосипед может соскользнуть, и крутой поворот закончится падением в кювет.
Для того чтобы этого не произошло, на крутых поворотах (или, как говорят, виражах) шоссе делают наклонным, т.е. горизонтальным для велосипедиста – так, как на рис. 22, б. Таким способом можно сильно уменьшить, а то и вовсе уничтожить стремление к соскальзыванию. Именно так устроены повороты на велосипедных треках и автострадах.
Вращение
Теперь займемся вращающимися системами. Движение такой системы определяется числом оборотов в секунду, которое совершает эта система, поворачиваясь вокруг оси. Надо, конечно, знать и направление оси вращения.
Чтобы лучше понять особенности жизни во вращающихся системах, рассмотрим «колесо смеха» – известный аттракцион. Устройство его очень несложно. Гладкий диск диаметром в несколько метров быстро вращается. Желающим предлагается сесть на него и попробовать удержаться. Даже люди, не знающие физики, быстро постигают секрет успеха: надо устроиться в центре диска, так как чем дальше от центра, тем труднее удержаться.
Такой диск представляет собой неинерциальную систему с некоторыми особыми свойствами. Каждый предмет, скрепленный с диском, движется по окружности радиуса Rсо скоростью v, т.е. с ускорением v 2/ R. Как мы уже знаем, с точки зрения неинерциального наблюдателя это означает наличие дополнительной тяжести mv 2/ R, направленной по радиусу от центра. В любой точке «чертова колеса» будет действовать эта радиальная сила тяжести, в любой точке она будет создавать радиальное ускорение v 2/ R. Для точек, лежащих на одной окружности, величина этого ускорения будет одинаковой. А на разных окружностях? Не торопитесь сказать, что ускорение, согласно формуле v 2/ R, будет тем больше, чем меньше расстояние от центра. Это неверно; ведь скорость более удаленных от центра точек колеса будет больше. Действительно, если обозначить буквой nчисло оборотов, совершаемых колесом в секунду, то путь, проходимый точкой колеса, находящейся на расстоянии Rот центра, за одну секунду, т.е. скорость этой точки, можно выразить так: 2 Rn.
Скорость точки прямо пропорциональна ее расстоянию от центра. Теперь формулу ускорения можно переписать:
a= 4 2 n 2 R.
А так как число оборотов, совершаемых в секунду, одинаково для всех точек колеса, то мы приходим к результату: ускорение силы «радиальной тяжести», действующей на вращающемся колесе, возрастает пропорционально расстоянию точки от центра колеса.
В этой интересной неинерциальной системе сила тяжести на разных окружностях разная. Значит, и направления «вертикалей» для тел, находящихся на разных расстояниях от центра, будут разные. Сила притяжения Землей, разумеется, одна и та же во всех точках колеса. А вектор, характеризующий дополнительную радиальную тяжесть, становится длиннее по мере удаления от центра. Значит, диагонали прямоугольников отклоняются все больше и больше от земной вертикали.