Кургинян Сергей Ервандович
Шрифт:
Во-вторых, ГЭС — это сложное и очень дорогое сооружение.
Как правило, обязательная часть ГЭС — это мощная плотина, которая обеспечивает большой запас воды в расположенном выше по течению водохранилище и большой перепад уровней между водохранилищем и турбинным залом. Накопив в водохранилище потенциальную энергию, эта вода за счет разницы в высоте между уровнем водохранилища и уровнем турбинного зала, с большой скоростью поступает в турбины ГЭС.
Водохранилище необходимо для того, чтобы работа ГЭС не зависела от сезонных и погодных изменений речного стока. Причем водохранилища крупных ГЭС аккумулируют десятки кубических километров воды.
Понятно, что в плотину высотой сотни метров, которая выдерживает напор такого количества воды и не боится селей, наводнений, землетрясений и терактов, нужно вбухать гигантское количество сложных стальных арматурных конструкций, а затем залить их миллионами кубометров высокопрочного бетона.
В-третьих, ГЭС никогда не бывают совершенно безвредны для природы региона, в котором они строятся. Плотины и водохранилища выводят из хозяйственного оборота большие площади земли. Изменение гидрологического режима в зоне водохранилищ приводит к подтоплению, засолению, заболачиванию почв, размыву русла реки ниже по течению, нарушению кислородного баланса в воде ниже плотины, неблагоприятным сдвигам природного равновесия в биосистемах.
Тем не менее, во многих развитых странах экономический гидропотенциал уже используется почти полностью. Так, например, в Европе, Японии, США, Канаде он задействован на 85–95%. Но в развивающихся странах его использование гораздо ниже: в Латинской Америке — 14%, в Юго-Восточной Азии — 12%, в Африке — 8%. На развивающиеся страны приходится около 70% неосвоенного мирового гидроэнергопотенциала.
В России уровень освоения экономического гидропотенциала составляет около 22%, причем в Европейской части страны он используется на 41%, а в Азиатской части — примерно на 16%.
Несмотря на сложность и высокую стоимость ГЭС, перспектива затем много лет получать крайне дешевую электроэнергию заставляет страны, имеющие доступный экономический гидропотенциал, проектировать и строить новые и новые большие и малые станции.
Но важно не только это. Собственный «работающий» гидропотенциал делает страну-хозяина гораздо менее зависимой от дефицитов и ценовых шоков мирового рынка углеводородных энергоносителей. Того рынка, на котором, как мы видим, ведут сложную игру крупнейшие хозяева нефти, газа, угля.
И потому борьба вокруг использования национальных гидропотенциалов оказывается одним из «фронтов» большой энергетической войны. Отметим, например, какую массированную атаку много лет ведут «глобальные экологисты» на китайские гидроэнергетические проекты не только на крупнейших (Хуанхэ, Янцзы, Сицзян, Хэйлунцзян и др.), но даже на малых реках, где строится большинство китайских ГЭС. И отметим столь же массированные атаки тех же экологистов на крупные гидроэнергетические проекты в Африке (на реках Конго, Замбези и др.) и в Латинской Америке (на притоках Амазонки, Ориноко, Ла-Платы и пр.).
Однако, несмотря на эти препоны, сложность и высокую стоимость, ГЭС строят во всем мире, где это возможно и экономически оправдано. И потому, хотя доля ГЭС в общем мировом энергобалансе составляет всего около 5%, в балансе производства именно электроэнергии эта доля почти в пять раз выше — более 19%. А установленная мощность ГЭС в мире –780 ГВт (миллионов киловатт) — существенно превышает установленную мощность атомных электростанций (380 ГВт) и уступает лишь установленной мощности тепловых электростанций (около 2700 ГВт).
Десятка стран-лидеров в производстве электроэнергии на ГЭС на 2009 г., по данным Международного энергетического агентства, выглядит следующим образом (показатели в ТВт/ч):
КНР 585
Канада 369
Бразилия 364
США 251
Россия 167
Норвегия 140
Индия 116
Венесуэла 87
Япония 69
Швеция 66
Где еще ищут возможности использовать «даровую» гидроэнергию?
В высокоразвитых странах, где экономический гидропотенциал уже задействован почти полностью, существенная часть гидроэнергетики представлена не ГЭС, а ГАЭС — гидроаккумулирующими электростанциями. Это электростанции, в которых в период низкого регионального энергопотребления (чаще всего ночью) мощные насосы (или так называемые «обратимые турбины») перекачивают воду из нижнего водохранилища в верхнее. А в период высокого регионального энергопотребления запасенная вода из верхнего водохранилища ГАЭС питает турбины электрогенераторов, как на обычной ГЭС. То есть, ГАЭС фактически перерабатывает дешевую «ночную» электроэнергию в дорогую и дефицитную энергию «пиковых нагрузок».
Есть еще и попытки освоить огромную «даровую» энергию морей и океанов. Разработки в этой сфере идут по направлениям строительства приливных и волноприбойных электростанций, а также размещения низкооборотных турбин в морских течениях.
Однако реальные коммерческие перспективы пока видятся только в отношении приливных ГЭС (прилив наполняет специальное водохранилище, а на трубопроводах приливного и отливного водотока устанавливаются турбины и электрогенераторы). Другие разработки из этой сферы еще не вышли за рамки экспериментов и отдельных «опытных» станций. Причем получаемая электроэнергия оказывается существенно дороже, чем энергия любых «традиционных» типов электростанций.