Шрифт:
Помимо электростанций, работающих на геотермальной энергии, геотермальное тепло, выкачиваемое из скважин насосами, сейчас широко используют для отопления и охлаждения помещений. Действительно, почему бы не воспользоваться поразительным постоянством температуры небольших земных глубин? Эта постоянная температура становится источником тепла в зимний период и источником холода в летний. Подобная технология особенно привлекательна тем, что может обеспечить и обогрев, и охлаждение, причем затраты электричества при ее применении на 25–50 % меньше, чем при использовании традиционных систем отопления и охлаждения. Например, в Германии в настоящее время действует 130 тыс. геотермальных насосов, обогревающих и охлаждающих жилые и коммерческие здания, при этом ежегодно в эксплуатацию вводят по меньшей мере 25 тыс. новых насосов [453] .
453
DOE, EERE, “Energy Savers: Geothermal Heat Pumps”, материал обновлен 24 февраля 2009 г., и “Energy Savers: Benefits of Geothermal Heat Pump Systems”, материал обновлен 30 декабря 2008 г. — см.: www.energysavers.gov; Burgermeister, op. cit. note 75.
Лидеры в области прямого использования геотермального тепла — Исландия и Франция. В Исландии геотермальную энергию используют для отопления почти 90 % домов, что в основном сделало использование угля в этих целях излишним. На долю геотермальной энергии приходится более трети общего энергопотребления Исландии. Во Франции после двух нефтяных кризисов 1970-х гг. было построено около 70 геотермальных тепловых станций, которые обеспечивают теплом и горячей водой примерно 200 000 жителей. В США геотермальное тепло получают индивидуальные дома в г. Рино, штат Невада, и в г. Кламат-Фоллс, штат Орегон. В числе других стран, в которых есть обширные местные системы отопления, работающие на геотермальной энергии, — Китай, Япония и Турция [454] .
454
Iceland National Energy Authority and Ministries of Industry and Commerce, Geothermal Development and Research in Iceland (Reykjavik, Iceland: April 2006), p. 16; World Bank, op. cit. note 67.
В северных странах геотермальное тепло идеально для теплиц. В числе тех, кто использует этот источник тепла для производства свежих овощей в зимний период, — Россия, Венгрия, Исландия и США. Поскольку растущие цены на нефть резко повышают расходы на транспортировку свежей продукции, использование геотермального тепла в тепличном хозяйстве, вероятно, в будущем получит дальнейшее распространение [455] .
Среди 16 стран, использующих геотермальную энергию в аквакультуре, — Китай, Израиль и США. Например, в Калифорнии 15 рыбных хозяйств, использующих подземные теплые воды, ежегодно дают примерно 10 млн фунтов тилапии, полосатого окуня и зубатки [456] .
455
Lund and Freeston, op. cit. note 68, pp. 34, 51, 53.
456
World Bank, op. cit. note 67.
Число стран, обращающихся к геотермальной энергии как к источнику получения электричества и тепла, быстро растет. Расширяется и спектр способов использования геотермальной энергии. Например, в Румынии с помощью геотермальной энергии обогреваются целые районы, а также теплицы, и осуществляется горячее водоснабжение домов и предприятий [457] .
Горячую воду из геотермальных источников широко используют в банях и бассейнах. В Японии есть 2800 курортов с горячими водами, 5500 общественных бань и 15 600 гостиниц, использующих геотермальные воды. В Исландии геотермальную энергию используют для обогрева примерно 1000 общественных бассейнов, большинство из них действуют круглый год и не являются крытыми спортивными сооружениями. В Венгрии на геотермальных водах работает 1200 плавательных бассейнов [458] .
457
Там же.
458
Lund and Freeston, op. cit. note 68, pp. 46, 53.
Если бы четыре самые населенные страны, расположенные по Тихоокеанскому огненному кольцу, — США, Япония, Китай и Индонезия — сделали серьезные инвестиции в развитие своих геотермальных ресурсов, эти ресурсы вполне смогли бы стать одним из основных источников энергии в мире. Осторожные оценки возможности производства электричества с помощью геотермальной энергии показывают, что если только в США и Японии будут производить 240 000 мегаватт с помощью геотермальной энергии, легко представить мир, где к 2020 г. будут действовать тысячи работающих на геотермальной энергии электростанций, производящих 200 000 мегаватт электроэнергии. Это и составляет цель, поставленную в Плане Б [459] .
459
Данные по США взяты из работы: Tester et al., op. cit. note 68; данные по Японии, рассчитанные на основе предположения о том, что Усовершенствованные Геотермальные Системы смогут удвоить потенциал, оцениваемый 72 000 мегаватт, взяты из работы: Hirofumi Muraoka et al., “Assessment of Hydrothermal Resource Potentials in Japan 2008”, Abstract of Annual Meeting of Geothermal Research Society of Japan (Kanazawa, Japan: 2008); Hirofumi Muraoka, National Institute of Advanced Industrial Science and Technology, послание, отправленное по электронной почте Дж. Мэттью Роуни, Earth Policy Institute, 13 июля 2009 г.
БИОЛОГИЧЕСКИЕ ИСТОЧНИКИ ЭНЕРГИИ
По мере истощения запасов нефти и природного газа мир обращает все большее внимание на энергию, получаемую из растений. В дополнение к энергетическим культурам, о которых шла речь в главе 2, к таким источникам относятся отходы лесной промышленности, отходы сахарной промышленности, городской мусор, навоз домашнего скота, посадки быстрорастущих деревьев, остатки урожаев и отходы городских и дворовых насаждений. Все это можно использовать для производства электроэнергии, тепла или горючего для автомобилей.
Возможности использования биологических источников энергии ограниченны. Даже кукуруза, наиболее эффективная из всех зерновых культур, может преобразовать в электричество всего лишь 0,5 % солнечной энергии. Напротив, солнечные фотоэлектрические или тепловые электростанции преобразуют в электричество примерно 15 % солнечного света. В мире, испытывающем нехватку земли, энергетические культуры не могут конкурировать с электричеством, производимым с помощью энергии Солнца, тем более с электричеством, производимым с помощью ветра (такое производство намного эффективнее использует землю) [460] .
460
Stephen R. Gliessman, Agroecology: The Ecology of Sustainable Food Systems, 2nd ed. (Boca Raton, FL: CRC Press, 2006), p. 256; Pew Center on Global Climate Change, “Climate TechBook: Solar Power”, fact sheet (Arlington, VA: May 2009); Richter, Teske, and Short, op. cit. note 52, pp. 18–19.
В лесной и деревообрабатывающей промышленности, в том числе на лесопилках и бумажных комбинатах, отходы уже давно используют для производства электричества. Американские компании сжигают отходы деревообработки и для получения необходимого им производственного тепла, и для выработки электричества, которое компании продают местным электростанциям. На предприятиях США, главным образом благодаря сжиганию отходов деревообработки, производят почти 11 тыс. мегаватт электроэнергии [461] .
461
Ralph P. Overend and Anelia Milbrandt, “Potential Carbon Emissions Reductions from Biomass by 2030” — в книге: Kutscher, op. cit. note 51, pp. 112–130; DOE, op. cit. note 51, p. 24.