Перельман Марк Ефимович
Шрифт:
Ну а две более легкие частицы Андерсона получили название мю-мезонов, а затем мюонов (+ и – ). Они не являются ядерно-активными и очень схожи с позитроном и электроном — имеют такой же спин (у пионов спин равен нулю, это облегчает их испускание и поглощение), но масса мюонов (положительных и отрицательных) в 207 раз больше массы электрона.
Теория Юкавы, несколько модифицированная, стала общепринятой. Обменное взаимодействие протекает, согласно этой теории, так: протон, например, может на какое-то время, диктуемое принципом неопределенностей, испустить положительный или нейтральный пион, его на такое же время поглотит соседний нейтрон; а поскольку при этом массы обоих отличны от масс свободных частиц (неважно — больше или меньше), то они и не могут отойти далеко друг от друга. Аналогично, нейтрон может испустить отрицательный пион, став на время протоном, или нейтральный, оставаясь нейтроном, но в обоих случаях — с дефицитом массы. Такие картинки похожи на игру в волейбол, но при этом игроки-частицы перекидываются не мячом, а частями собственных тел и поэтому вынуждены оставаться неподалеку, на расстояниях, определяемых, опять же, принципом неопределенностей.
Протон и нейтрон вместе с другими еще более тяжелыми частицами называют барионами (от греческого «барос» — тяжелый). Поскольку их спин равен 1/2 , они подчиняются уравнению Дирака, а раз так, то должны существовать и антибарионы (антипротон, антинейтрон, они вскоре были открыты на ускорителях).
У барионов должны быть какие-то общие, «семейные» характеристики. Поэтому Юджин Вигнер (1902–1995, Нобелевская премия 1963 г.), который первым еще в 1933 г. доказал, что ядерные силы являются короткодействующими, ввел в 1949 г. понятие барионного заряда и постулировал закон его сохранения: у всех барионов этот заряд положительный, а у антибарионов — отрицательный; поскольку античастицы должны быть во всем противоположны частицам, то электрический заряд у антипротона отрицательный. (Заметим, что если в атоме водорода электрон вращается вокруг протона с положительным зарядом, то в атоме антиводорода вокруг антипротона вращается позитрон — такие антиатомы были получены. Сейчас стараются их накопить и подробнее исследовать.) В отличие от электрических зарядов, наличие одинаковых барионных зарядов ведет к силам притяжения между ними, переходящим в отталкивание на очень уж близких ядерных расстояниях (поэтому они не могут слиться вместе), но между барионом и антибарионом нет этого отталкивания, поэтому они могут при соударении аннигилировать так же, как пара электрон и позитрон; при этом, конечно, должен учитываться и закон сохранения электрических зарядов.
Юджин (или Евгений) Вигнер получил диплом инженера-химика и работал на кожевенном заводе (перспективы работать по физике были тогда мизерны), но затем, все же, под влиянием своего друга и одноклассника Дж. фон Неймана, также получившего первоначально инженерную специальность, стал — сперва бесплатно — работать в физической лаборатории Берлинского университета. Работу Вигнер начал с расчетов скоростей химических реакций, вместе с фон Нейманом применил к квантовой физике теорию групп (раздел алгебры), а затем разработал принципы теории симметрий, что позволило сразу же выделить похожие процессы, определить их сходные параметры и т. д. Ему принадлежат классические работы по теории ядерных реакций, работы по философии и т. д.
Введение барионного заряда сразу же вызвало такую проблему: наряду с веществом должно существовать антивещество, в котором место всех частиц занимают античастицы. Поэтому одинаковые образования из вещества и антивещества могут аннигилировать. Но существуют ли звезды и галактики из антивещества или нет? А если они не существуют, то почему?
Согласно теории Дирака, атомы вещества и антивещества оптически ничем друг от друга не отличаются, поэтому изучая их спектры мы не можем сказать, что наблюдаем звезды из вещества или антивещества. Отличить можно лишь весьма характерные спектры аннигиляции, скажем, электронов и позитронов, которые обязательно присутствовали бы при столкновениях звезд и антизвезд или даже космических облаков. Но ни в одной части Вселенной ничего похожего пока не обнаружено — загадка остается нерешенной.
Первая модель структуры атомного ядра была предложена в 1936 г. независимо Н. Бором и Я. И. Френкелем. По этой модели ядро можно представить себе как каплю жидкости, т. е. как смесь нуклонов, не имеющих никакой внутренней структуры. Поэтому можно определить величину «температуры» ядра при его возбуждении, а вылет частиц из него рассматривать по аналогии с испарением молекул из нагретой капли. Эта модель, как мы увидим, неплохо объясняла деление ядер, выделение энергии при некоторых ядерных реакциях и т. д.
Якова Ильича Френкеля (1894–1952) можно назвать первопроходцем во многих областях теоретической физики. Он первым установил основные положения электронной теории металлов, ввел понятия дефектов в кристаллах и идею квазичастиц-экситонов, первым рассмотрел явления туннелирования на границах металл — полупроводник, объяснил природу ферромагнетизма, построил теорию жидкого состояния. Ему принадлежат также пионерские работы по гео-, астро- и биофизике.
Но теория ядра на этом, конечно, не закончилась: нужно было объяснить, почему одни ядра устойчивы, а другие распадаются, и выяснить, как именно происходит такой распад. Но помимо того, ядра обладают и электромагнитной структурой, а она должна быть в каком-то смысле схожей с системой атомных уровней, только излучение ядер происходит в гамма-диапазоне, т. е. обладает гораздо более высокой энергией. Ю. Вигнер и Дж. фон Нейман применили теорию групп, чтобы связать эти уровни ядра с наблюдаемым его поведением: теория групп и следующие из нее принципы симметрий определяют, какие характеристики частиц не могут изменяться в ходе ядерных реакций. Например, принципы симметрии и требования инвариантности могут помочь предсказать, какие ядерные реакции возможны, а какие нет.
Эта работа оказалась особенно полезной при попытке объяснить существование того, что Вигнер назвал магическими числами.
Еще в 1933 г. В. Эльзассер (1904–1991) заметил, что атомы с некоторыми определенными числами протонов или нейтронов более устойчивы, т. е. реже бывают радиоактивными, чем другие ядра. Поэтому в любой земной породе атомов с такими ядрами оказывается больше, чем должно было быть при равномерном распределении: стабильные ядра остаются и накапливаются, тогда как остальные ядра распадаются.
Оказалось, что в ядрах элементов, распространенность которых в природе почему-то намного больше, чем у их ближайших соседей по таблице элементов и изотопов, число протонов либо число нейтронов чаще равно одному из чисел: 2, 8, 20, 28, 50, 82, 126 — эти числа и были названы «магическими». Загадку их существования разрешили независимо Мария Гепперт-Майер (1906–1972) в США и Ханс Йенсен (1907–1973) в Германии, удостоенные за это достижение Нобелевской премии 1963 г., которую они разделили с Ю. Вигнером.