Вход/Регистрация
Начала современного естествознания: концепции и принципы
вернуться

Савченко Валерий Нестерович

Шрифт:

В рамках синергетического (Хакен) и диссипативно-структурного (Пригожин) подходов самоорганизация определяется как одна из форм организации материи. При этом определяются, с одной стороны, равновесные формы организации, отличающиеся от самоорганизации, а с другой — под «крышей» синергетического подхода объединяются в особый класс — динамический, физические, химические и биологические структуры, которые ранее принципиально не сводились вместе.

Самоорганизация — это процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Процессы самоорганизации встречаются в системах высокого уровня сложности, обладающих большим количеством элементов, связи между которыми имеют нежесткий характер. Эти процессы происходят путем перестройки существующих и организации новых связей между элементами системы, т. е. синергетически, корпоративно.

Синергетическое познание самоорганизации и эволюции имеет новый образ, новую парадигму, которую несет в себе современная наука, вступающая в принципиально новый «пост-неклассический», «бифуркационный» этап своего развития. Пока сам термин «синергетическое познание» носит условный смысл, так как происходит становление науки с не принятым еще всеми названием. В синергетике, и равно как в «теории диссипативных структур» Пригожина как новых междисциплинарных направлениях, сфокусированы главные, ключевые особенности парадигмы постнеклассической науки, обусловленные, прежде всего, присущим ей нелинейным стилем мышления, плюрализмом, неоднозначностью теоретических представлений и формулировок, наконец — новым пониманием роли хаоса в мироздании, как его необходимого конструктивного начала, необходимый созидательный момент общей картины становящейся, самоорганизующейся реальности. Необходимо усвоить не только нелинейное мышление, но главное — в контексте синергетического познания понять, что «порядок и беспорядок представляются не как противоположности, а как то, что неотделимо друг от друга» (И. Пригожин). Эволюционные идеи в разных науках развивались изолированно друг от друга до появления объединяющей их всех концепции глобального эволюционизма.

В концепции глобального эволюционизма подчеркивается важнейшая закономерность — направленность развития мирового целого на повышение своей структурной организации, в которой все предстает как единый процесс материальной эволюции, самоорганизации, саморазвития. Также в этой концепции важны идеи отбора и подробно рассмотрен антропный принцип. Согласно этому принципу, существует некоторый тип универсальных системных связей, определяющих целостный характер существования и развития нашей Вселенной, нашего мира как определенного системно организованного фрагмента бесконечно многообразной материальной природы. Ключевые слова текущего постнеклассического (эволюционно-диссипативно-го) этапа науки: диссипативные структуры, синергетика, жизнь, автопоэз, космогенез, глобальный эволюционизм, антропный принцип.

13. Математика и естественнонаучная реальность мира

13.1. Математизация как принцип целостности естествознания

Постоянно углубляющаяся математизация всех разделов естественных наук, и особенно физики — лидера естествознания всех научных веков, одна из важнейших культурных особенностей цивилизации, без которой просто нельзя представить себе современное естествознание. Введение в естествознание новых, все более абстрактных математических дисциплин — единственный пока что способ придать вновь открываемым и уже известным законам природы достаточно универсальный, всеобщий характер.

Наиболее полная и последовательная математизация в естествознании была впервые осуществлена в физике (точнее, в механике) Ньютоном. Чтобы сформулировать полную систему законов механического движения, Ньютону (и независимо от него Лейбницу) пришлось создать новый раздел математики — дифференциальное и интегральное исчисление.

Триумф ньютоновой механики в точном, однозначном объяснении множества экспериментальных данных астрономии, инженерного дела, баллистики и т. п. (после чего и появилось понятие о точных науках). Это стало предпосылкой появления концепции механистического естествознания, как исторически первой программы установления теоретического единства механистической науки (путем сведения всех ее явлений к простым, сложным или специфическим механическим перемещениям).

В начале XX века еще более грандиозную, чем Ньютон, математизацию физики совершил великий немецкий физик Альберт Эйнштейн.

Огромной заслугой Альберта Эйнштейна и немецкого математика Германа Минковского перед методологией физики считается то, что они, не опираясь, по существу, ни на какие новые опытные данные, а исходя только из методологического анализа основных понятий классической механики, пришли к логическому выводу о необходимости замены евклидова пространства на новое пространство. Изменение метрического типа пространства, в которое «погружены» все интересующие нас объекты, пространства, в котором разворачиваются все физические события нашего мира, является необходимым для более точного описания даже простейшего — равномерного и прямолинейного механического движения. Как известно, этот тип нового пространства получил впоследствии название псев-доэвклидова, или пространства (или мира) Минковского (см. главу 3).

Следующий шаг проведения в жизнь программы «геометризации» физики — в так называемой «общей теории относительности», был в этом плане совершенно последовательным: привлечь для характеристики гравитационных состояний физических объектов другие новые пространства. Ими оказались римановы, произвольно «искривленные», в окрестности каждой точки, локальные пространства. Здесь Эйнштейн уже во всей полноте использовал идею великих математиков XIX в. (Клиффорда в первую очередь, и Римана) о том, что наиболее общим типом изменения абстрактных математических структур физической теории является не только вариация траекторий движения материальных точек, но также и изменение метрических свойств объемлющего их пространства.

Экспериментальное подтверждение общей теории относительности вызвало к жизни в 20-е гг. прошлого века еще более фантастические надежды — «свести» и электромагнитные взаимодействия к изменениям метрики объемлющего физические объекты пространства (попытка немецкого физика Теодора Калуцы, а затем немецкого математика Феликса Клейна и др.).

Однако надежды не оправдались: природа оказалась «устроенной» гораздо более богато и разносторонне, чем это предполагали даже величайшие умы человечества. Ни самому А. Эйнштейну, ни таким его маститым последователям, как Э. Шредингер, В. Паули, Г… Веблен, Т. Калуца, П. Бергман и другим, не удалось свести только к изменениям пространственной метрики ни электромагнетизм, ни тем более открытые позднее сильные (ядерные) — мезонные и слабые (распадные) — лептонные взаимодействия.

  • Читать дальше
  • 1
  • ...
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: