Шрифт:
Рис. 3.2. Упрощенная диаграмма концентрических сфер Евдокса. Сферы вращаются вокруг своих осей с различными, но постоянными скоростями. Оси соединяют каждую внутреннюю сферу со следующей, внешней, и они наклонены друг к другу на определенные углы. Поэтому траектория планеты, видимая с Земли, не круговая, а более сложная.
Первая сфера вращается вокруг оси север-юг и дает суточное движение. Один полный поворот второй сферы, наклоненной к первой на угол наклона эклиптики к небесному экватору, обеспечивает сидерический период. Наконец, третья сфера моделирует вращение по орбите, наклоненной к эклиптике. В случае Луны и Солнца достаточно трех сфер (Евдокс ошибочно считал, что Солнце движется не точно по эклиптике). Планеты с обратными петлями — Меркурий, Венера, Марс, Юпитер и Сатурн — для объяснения их более сложного движения требуют наличия четырех сфер у каждой. Таким образом, полное количество сфер составляет (2 х 3) + (5 х 4) = 26, и все они концентрически вложены друг в друга.
С помощью своей модели Евдокс мог неплохо объяснить движения планет, известные в то время. Однако Марс оказался крепким орешком, и его движение было почти невозможно описать с помощью этой модели. Видимо, Евдокс рассматривал свою модель не как реальную физическую конструкцию, а как чисто математическое построение, где ряд сфер одной планеты никак не влияет на сферы другой, хотя все они вложены одна в другую.
Развитием модели Евдокса стала планетная модель Аристотеля, включавшая 56 сфер с Землею в центре. Возможно, Аристотель рассматривал сферы как физические объекты, типа небесного кристалла. Однако он отвергал идею Пифагора о музыке сфер. Наоборот, он рассматривал тишину небес как доказательство наличия сфер. Шума можно было бы ожидать, если бы небесные тела неслись сквозь какую-то среду. Число сфер возросло, поскольку Аристотель хотел соединить ряд сфер каждой планеты с дополнительными сферами, так чтобы основное суточное движение внешней сферы неподвижных звезд передавалось сверху вниз.
Планетная модель Евдокса не смогла объяснить некоторые наблюдательные данные, и это обнаружил Автолик из Питаны (около 360–290 до н. э.). Когда планеты делают петлю на западе, они ярче, чем в остальное время, что означает, что в этот момент они к нам ближе. В моделях, где центр сфер расположен на Земле, планеты всегда остаются на одном и том же расстоянии от Земли. Это несоответствие было устранено Аполлонием Пергским (около 265–176 до н. э.). Он работал в новом мировом научном центре — в Александрийском музее. Аполлоний был учеником Евклида и был известен своими исследованиями геометрических кривых — эллипса, гиперболы и параболы. Гораздо позже эти кривые сыграли важную роль в изучении планетных орбит. Аполлоний разработал новый, хотя и основанный на тех же идеальных окружностях, способ представления планетных движений.
В его модели планета не укреплена на своей сфере, а движется по маленькой окружности — эпициклу, центр которого закреплен на равномерно вращающейся главной сфере. Когда планета перемещается в обратном направлении по эпициклу, она находится в наиболее близком к нам положении, и этим объясняется ее поярчание при совершении обратной петли на небе (рис. 3.3). Движение по большому кругу — дифференту происходит с сидерическим периодом планеты, в то время как по эпициклу она вращается с синодическим периодом. Вращение в обоих случаях происходит с постоянной скоростью. Эпицикл объяснял изменение блеска каждой планеты и ее движение по небу, заменяя две сферы для обратного движения. Эта схема использовалась и совершенствовалась до конца Средневековья.
Рис. 3.3. Схематическое изображение модели эпициклов. Планета движется по малому кругу (эпициклу), центр которого движется по большому кругу (деференту), а в центре его расположена Земля.
Мы практически ничего не знаем о жизни Гиппарха (около 190–120 до н. э.), и его труды почти полностью утеряны, но все же нет никаких сомнений, что это был великий астроном, живший на острове Родос и в других местах. Он разработал тригонометрию, необходимую для астрономии, где в вычислениях используются треугольники. Кроме того, он создал каталог звезд, включающий более 8оо светил, описание их положения на небе и их яркости, выраженной в звездных величинах, единицах, используемых до сих пор. Самым ярким звездам Гиппарх приписал первую величину. Для звезд, с трудом различимых на небе невооруженным глазом, была указана шестая звездная величина, а для остальных звезд диапазон звездных величин составил от 2 до 5.
Позже римский писатель Плиний Старший (23–79 н. э.) выразил свое восхищение каталогом Гиппарха: «Он сделал то, что было бы смело даже для богов, — он пересчитал звезды и созвездия, имея в виду будущие поколения, и дал им имена. Для этого он создал приборы и с их помощью определил положение и размер каждой звезды. Благодаря этому теперь будет легко узнать не только, рождаются ли звезды и умирают ли они, но и передвигаются ли они со своего места и становятся ли ярче или тусклее».
Каталоги звезд и других небесных объектов были и остаются очень важными для изучения Вселенной. Именно сравнивая свой каталог с измерениями двух александрийских астрономов, проделанными за полтора века до него, Гиппарх обнаружил медленное движение неба. Он использовал координаты для определения положения звезд. Это аналоги широты и долготы на сферической Земле. Для определения двух данных координат требуются основной круг, делящий сферу на две равные части, и фиксированная нулевая точка на нем. На Земле это экватор и его пересечение с меридианом (линия север-юг), проходящим через Гринвичскую обсерваторию близ Лондона. Например, долгота корабля на Земле равна числу градусов от Гринвича вдоль экватора до того места, где проходящая через корабль линия север-юг пересекает экватор. Широта корабля равна количеству градусов вдоль этого круга к северу или к югу от земного экватора.
За год Солнце обходит небесную сферу по эклиптике, наклоненной на 23° к небесному экватору, проходящему прямо над земным экватором. Поэтому Солнце пересекает небесный экватор дважды, в точках, разделенных на 180°. Один раз — весной, в момент весеннего равноденствия, переходя из южного полушария неба в северное; второй раз — осенью, в день осеннего равноденствия, при переходе с севера на юг. Гиппарх использовал эклиптику в качестве основного круга, от которого измеряется небесная широта к северу или югу. Он выбрал положение Солнца 21 марта как точку весеннего равноденствия и нулевую точку на эклиптике. Угол, отсчитываемый от этой нулевой точки к востоку, считается небесной долготой. Сравнивая старые координаты со своими измерениями, он обнаружил, что долгота звезд за прошедшие 150 лет уменьшилась на 2°, а широта не изменилась. Гиппарх понял, что точка весеннего равноденствия не остается неподвижной, а медленно перемещается по эклиптике к западу, в направлении, противоположном движению Солнца. Точки пересечения постепенно сдвигаются вдоль зодиака от одного созвездия к другому в течение тысяч лет.