Вход/Регистрация
История математики. От счетных палочек до бессчетных вселенных
вернуться

Манкевич Ричард

Шрифт:

Никто никогда не видел трансцендентное число; их существование было доказано в 1851 году Жозефом Лиувиллем. Лишь в 1882 году Фердинанд Линдеманн доказал, что старое доброе число — это трансцендентное число, тем самым ответив отрицательно на многовековой вопрос о том, можно ли сделать невозможное, вычислив его с помощью циркуля и линейки. И все же Кантор пришел к еще более ошеломляющим результатам.

В письме к Дедекинду от 1877 года Кантор продолжил доказывать то, что Дедекинд просто принял как данность: то, что степень множества точек на любом линейном сегменте равна степени множества любого другого линейного сегмента. Таким образом, на линии единичной длины находится то же самое число точек, что и на всей числовой оси. Еще более впечатляющим было открытие, что это не зависит от размерности: на линии единичной длины находится такое же число точек, что и на площади со стороной единичной длины, и в кубе со стороной единичной длины — фактически то же самое число точек, как и во всем трехмерном пространстве. Кантор прокомментировал это Дедекинду: «Я вижу это, но я не могу поверить в это». К сожалению, слишком многие разделяли его недоверие.

В 1895 году Кантор письменно изложил свои отточенные представления об изобретении нового вида числа, так называемых трансфинитных кардинальных числах. Он обозначает счетную бесконечность символом o (произносится как «алеф-ноль»), а первое неисчисляемое множество как I. Таким образом, это целая бесконечная последовательность трансфинитных чисел, каждое из которых формируется как множество всех множеств предыдущего множества. Кантор также предложил, чтобы набор I был эквивалентен множеству реальных чисел. Это так называемая Гипотеза Континуума, и она до сих пор не имеет доказательства.

Несмотря на столь новаторскую работу, Кантор так никогда и не реализовал свои амбиции, не сумев получить степень профессора в Берлинском университете. В значительной степени к этому привела открытая враждебность Леопольда Кронекера — его старого профессора. Кронекер активно выступал против новой ветви математики, открытой Кантором, делая заявления вроде «Бог создал целые числа, все остальные — работа человека». Плодотворная дружба с Дедекиндом прекратилась в 1882 году, когда Дедекинд отказался присоединиться к Кантору в Галле, хотя их дружба возобновилась в 1897 году, когда они встретились на конгрессе. Дедекинд, похоже, был вполне удовлетворен уютной провинциальной атмосферой, в которой он жил. Большую часть своего времени он посвящал редактированию собрания сочинений Дирихле и Гаусса — его бывших преподавателей, и Римана — его уважаемого современника. Кантор оставался в университете Галле. В 1884 году он перенес первый приступ умственного расстройства. В более поздние годы депрессии были постоянной темой его писем. Перед самым началом Первой мировой войны он вышел на пенсию и умер в 1918 году в психиатрической больнице в Галле. Конечно, неприятие его работ усугубило его душевное состояние. Но он дожил до того момента, когда его идеи получили законное признание как «самый удивительный продукт математической мысли», по словам Дэвида Гилберта, одного из ведущих математиков начала двадцатого столетия. Гилберт добавил: «Никто не сможет изгнать нас из рая, созданного для нас Кантором». Работа Кантора плодотворно повлияла на многие ветви математики, включая новый вид теории интегрирования в терминах измерения множеств. Это также помогло проинтегрировать функции Дирихле — ответ b.

20. Об игральных костях и генах

Исследование вероятности в том виде, каким мы видим это сегодня, началось лишь в семнадцатом веке, однако изучение комбинаций и перестановки объектов или событий имеет более длинную историю. Огромный интерес к ним был в Индии, особенно у джайнских математиков, работавших в IV веке до нашей эры. Джайнов вдохновляла религия, но большинство более поздних авторов стремилось изучить эти процессы для того, чтобы провести анализ азартных игр — предсказать возможные результаты и вывести правила, которые сделают игру совершенно честной. Поскольку вероятность стала тесно переплетаться со статистикой, появились новые методы анализа данных как в естественных, так и в общественных науках. Хотя эта наука никогда не покидала игорные столы, статистика в эпоху Просвещения стала математическим способом проведения государственной политики и гарантировать моральную и социальную справедливость.

Джайнизм появился в Индии почти одновременно с буддизмом, и его математическая литература относится к третьему или четвертому векам до нашей эры. Джайны выказали особый интерес к работе с числами и к средствам для того, чтобы выразить очень большие количества. Они обсуждали различные типы бесконечных чисел и методы их получения, а также различные способы комбинирования бесконечного числа объектов. Они занимались этими исследованиями, изучая различные способы сочетать пять чувств. Интерес к перестановкам можно увидеть также в ведической литературе — там это выражалось в способах объединения слогов в поэтические произведения и молитвы. В Майсуре в девятом веке джайнский математик Махавир (ок. 850) создал ставшие теперь стандартными правила комбинаций и перестановок.

Исследование комбинаций и перестановок теперь называется комбинаторикой. Космологическое и мистическое использование законов комбинаторики можно увидеть в трудах каталонского философа и мистика тринадцатого века Раймунда Луллия (1232 — ок. 1316), но, похоже, они прошли незамеченными для большинства математиков. Стимулом для изучения комбинаторики стала вполне мирская озабоченность азартной игрой. В «Божественной комедии» Данте упоминается «азартная игра», в которую играют с тремя костями. Один игрок бросает кости, а другой должен сделать предположение относительно их суммы. В поэме тринадцатого века «De vetula», написанной поэтом, известным как псевдо-Овидий, перечисляются 56 различных способов, которыми могут выпасть кости. Обе работы породили различные комментарии относительно математических правил игры. «Предыстория» этого предмета, вероятно, заканчивается трудом Кардано «Книга об игре в кости», изданным после его смерти в 1663 году, но написанным на сотню лет раньше, в котором описывается, как установить правильные ставки и в игре в кости, и в карточных играх.

Теория вероятности достигла нового уровня сложности в переписке 1654 года между Блезом Паскалем и Пьером де Ферма. Они обсуждали так называемую проблему очков игрока, которая касается разделения выигрыша между двумя игроками, когда игру в кости приходится оставить незаконченной. Этой проблемой занимались многие итальянские математики эпохи Ренессанса, включая Пачоли, Кардано и Тарталью, но ни один из них не добился окончательного решения. Ферма предпочел метод, основанный на составлении списка всех возможных результатов и вычислении абсолютного победителя в каждой игре. Вычисления становятся весьма длинными, поскольку число игр увеличивается, и Паскаль предпочитает метод математического ожидания. В своем «Трактате об арифметическом треугольнике» он объяснял отношения между числами в треугольнике Паскаля и о необходимых комбинациях. Каждый ряд треугольника дает коэффициенты биномиального разложения: третий ряд, например, дает числа 1, 3, 3, 1, которые служат коэффициентами разложения (а+ b) 3= а 3+ 3a 2b+ 3ab 2 + b 3.Число 3 во втором элементе показывает, что есть три комбинации, дающие а 2b,то есть aab, аbаи bаа.Используя соответствующий ряд в треугольнике Паскаля, можно таким образом быстро решить задачу разделения выигрыша. Если игроку А нужно две игры для того, чтобы выиграть, в то время как игроку В для этого нужно три игры, то один из игроков должен победить по крайней мере в четырех играх. Из ряда 1, 4, 6, 4, 1 в треугольнике Паскаля, выигрыш должен быть разделен в соотношении (1+4+6): (4+1) или 11:5.

Эти проблемы обычно обсуждались в терминах дробей, а не вероятностей. Первое теоретическое обсуждение вероятностей, лежащих в промежутке между 0 и 1, мы находим в трактате «Искусство предположений» Якоба Бернулли, изданном в 1713 году уже после его смерти. Он также указал, что вероятности можно оценить по частоте выпадения события, и попытался установить верхний предел числа испытаний, после которого можно быть «нравственно уверенным» в оценке вероятностей. К сожалению, такое строгое условие приводило к очень высоким значениям числа необходимых испытаний: например, чтобы быть на 99,9 % уверенным относительно правильного соотношения числа шаров разного цвета в коробке, потребовалось бы 25.500 испытаний. Эта процедура была уточнена Абрахамом де Муавром (1667–1754), который правильно оценил нормальное распределение как предел двучлена и получил более разумное число испытаний, позволяющих экспериментально приблизиться к истинным значениям вероятности. Де Муавр также многократно переиздавал свой труд «Страхование жизни», в котором эти открытия были применены к оценке страхования жизни и вычислению ренты. Стимул для того, чтобы применить вероятностные методы к демографическим данным, появился совершенно неожиданно. И здесь нам снова придется обратить взор к небесам.

  • Читать дальше
  • 1
  • ...
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: