Малинецкий Г. Г.
Шрифт:
Итак, в нашем случае структура с меньшим временем обострения "выигрывает". Аутсайдеры остаются "вечно развивающимися". На первый взгляд кажется, что в этом случае структуры "разного возраста", различного уровня развития, в принципе не могут быть объединены. Однако это не так! В этой диссипативной сильно нелинейной среде существуют законы, по которым простейшие структуры могут быть объединены в более сложные (см. рис.18). Пример объединения двух простых структур в сложную представлен на рис.18. В настоящее время в футурологии, глобальной динамике часто упоминается термин "коэволюция", понимаемый как совместное изменение, взаимодействие в ходе развития. Коэволюция человека и природы, коэволюция культур, регионов с разным уровнем развития, коэволюция технологий и цивилизационных императивов. В этой простейшей среде мы также видим пример коэволюции, позволяющий сложному развиваться согласованно, не распадаясь на простейшие части.
Рис. 18. Характерный пример эволюции сложных нестационарных структур. Такие структуры могут возникать, когда процессы идут в LS-режиме с обострением.
newpage Отдадим себе отчет, что это совпадает с нашим интуитивным представлением о таких сложных системах, как общество, организм, биоценоз, научное сообщество, где целое может существовать только потому, что части объединены сотнями положительных и отрицательных обратных связей.
В простейших случаях можно получить оценку числа возможных структур. В обсуждаемой одномерной модели оно определяется соотношением
N=[S-[[S]/S]]+1,
где S=(
Очевидно, при
Рис. 19. Типичный вид бифуркационной диаграммы, возникающей в системах типа реакция-диффузия вида (1). Сплошными линиями показаны ветви, на которых лежат устойчивые решения; пунктиром – ветви неустойчивых решений.
Было бы естественно трактовать эволюцию, развитие прогресса как рост разнообразия, усложнения, увеличение числа функциональных единиц. В частности, в другой базовой модели, в системе Тьюринга, имеющий вид (1), усложнение мыслится следующим образом (см. рис.19). Здесь медленное изменение параметра B (времени с начала развития или длины ткани) вместе со случайными возмущениями как бы "ведет" систему по бифуркационной диаграмме. ( Бифуркационной диаграммой называется зависимость одной из величин, характеризующих решение, от параметра. На рис.19 M – это амплитуда решения. Сплошным отмечены устойчивые ветви, пунктиром – неустойчивые.) Выбор из устойчивых ветвей вблизи точки бифуркации происходит под воздействием малых случайных возмущений. Если параметр B – длина области, то с его увеличением (что можно интерпретировать в модели как рост ткани) число максимумов у возникающей диссипативной структуры растет. (Обычно предполагается, что внешний параметр B меняется настолько медленно, что решение успевает достичь состояния, близкого к стационарному, не зависящему от времени.) Можно сказать, что тип структур и переход от простейших к более сложным мы "задаем руками". Камнем преткновения для большинства моделей морфогенеза такого типа является явление регенерации – восстановление ряда органов у животных. Организм как будто бы помнит в этом случае свой "проектный" размер, и восстановление утраченного останавливается именно тогда, когда этот размер достигнут.
Способ управления процессами в такой среде тоже ясен, – чтобы создать в ней среде сложную упорядоченность, вообще говоря, надо менять внешний параметр B. Если же такой возможности нет, то надо посмотреть по бифуркационной диаграмме, какие типы упорядоченности допускает при этом значении система, и управлять начальными данными, чтобы в конце концов возникла желаемая структура. Остальные варианты, о которых мы тоже поговорим, требуют более сложного управления.
Ситуация в модели тепловых структур, которую мы интерпретировали как динамику информированности в неком научном сообществе, принципиально иная. Параметры, определяющие свойства среды (
Все сложные структуры в этой модели неустойчивы. Чтобы они существовали, нужно правильным (как иногда говорят, резонансным) образом задать начальные данные. На сцену выходит геометрия, дающая гораздо больше возможностей, чем управление параметрами и свойствами среды. В одной и той же среде возможны разные типы организации. Прежде чем что-то создавать, надо их знать.
Свойство неустойчивости, которое еще два десятка лет считалось большим пороком модели, сейчас выступает в несколько ином свете. Устойчив ли наш мир, организм, общество, психика? После того, как ученые всерьез начали искать свидетельства нестабильности, оптимистичный ответ:"Конечно, да!" – вызывает сомнение. Приходится уточнять, в каком смысле система устойчива, относительно каких возмущений, на каких временах. Специалисты по теории управления хаосом, одному из бурно развивающихся направлений нелинейной динамики, сравнивают управление многими сложными социальными и техническими системами с ездой на велосипеде. Это системы, которые статически неустойчивы, но движением которых вполне можно управлять. Это изменение мировоззрения отражает и название одной из работ лауреата Нобелевской премии И.Пригожина – "Философия нестабильности".
Этот взгляд приходит в противоречие с одним распространенным мифом общественного сознания относительно "естественного отбора всего лучшего", который, например, может осуществлять рынок или История. В нашей стране за последние десять лет было разрушено много важных социальных институтов и структур. Однако, несмотря на горький опыт, со страниц газет и с экранов телевизоров то и дело объясняют, что не очень-то эти структуры были и хороши, раз не смогли постоять за себя. Это неверно. Любая сложная система, включая рыночную экономику, западную цивилизацию или "открытое общество", имеет свою ахиллесову пяту, свои болевые точки. В режиме нормального функционирования она старается их надежно прикрыть и защитить. Выбор сегодня обычно происходит не между добром и злом, не между стабильностью и изменчивостью, а между б'ольшим и меньшим злом, между различными неустойчивыми траекториями, за которые приходится платить разную цену.
Обсуждаемая модель отражает еще одну коллизию науки конца века. Триумфом химии стало открытие универсальных кирпичиков – элементов, из которых построена Вселенная; физика элементарных частиц тоже преуспела в изучении первооснов вещества, – этот список успехов анализа, выделения простейшего, можно продолжить. Но почему этих кирпичиков столько, а не больше? И каковы законы синтеза, объединения. Почему в малые работоспособные группы объединяются так, а не иначе? Почему не возникает далеких стабильных трансурановых элементов? Каким законам природы это противоречит? Почему в развитых странах не возникает одной "сверхмонополии", полностью контролирующей, к примеру, всю автомобильную промышленность или компьютерную индустрию? Эти вопросы, впрямую связанные с проблемой организации процессов, людей, структур, являются трудными для современной научной парадигмы. Их XX в. оставляет в наследство своему преемнику. И в этой связи, каждый случай, где в законах организации удается разобраться в деталях, представляется весьма ценным. Таким случаем и является обсуждаемая модель.