Вход/Регистрация
Мечта Эйнштейна. В поисках единой теории строения
вернуться

Паркер Барри

Шрифт:

В 1871 году Максвелл занял кафедру в Кембриджском университете и следующие несколько лет посвятил созданию прославленной Кавендишской лаборатории, ставшей впоследствии самой знаменитой и лучше всего оборудованной в Европе (лаборатория названа в честь Генри Кавендиша, известного учёного, ранее работавшего в Кембридже). В течение ряда лет Максвелл занимался редактированием неопубликованных трудов Кавендиша; они вышли в свет в двух томах в 1879 году.

Все, кто знал Максвелла, отзывались о нём как о человеке дружелюбном и очень самоотверженном; однажды, ухаживая за больной женой, он несколько суток провёл без еды и сна. Впрочем, с возрастом он становился всё более нелюдимым, часто им овладевала депрессия. Друзья безуспешно старались развлечь его. Причина этой перемены стала известна позже: у него был рак. Два года он молчал об этом и ничего не предпринимал. В конце концов боли стали непереносимы, и его увезли в Гленэр, где он через две недели скончался. Не стало величайшего физика своего времени, но в том же 1879 году родился более великий – Альберт Эйнштейн.

Первые попытки объединения

Благодаря открытым Максвеллом законам электромагнитного поля и полученным Эйнштейном уравнениям гравитационного поля появились две важные, но не связанные друг с другом теории. Посвятим несколько минут сравнению этих полей. Есть у них общие свойства, но есть и значительные различия. Оба нуждаются в источнике: источником гравитационного поля является вещество, а электромагнитного – электрический заряд. Когда заряд колеблется, изменяющееся электрическое поле создаёт магнитное поле, и образующаяся электромагнитная волна распространяется в пространстве. Точно так же при колебании вещества генерируются гравитационные волны. Однако у электромагнитного поля есть два типа источников – положительные и отрицательные заряды. Здесь аналогия с тяготением кончается – вещество бывает только одного вида.

Есть сходство и в изменении интенсивности поля около источника. По мере приближения к источнику электрическое поле становится мощнее. Отсюда вытекает важное следствие – чем меньше расстояние до электрона, тем интенсивнее проявляется поле, а в центре, согласно теории, оно становится бесконечно большим. Говорят, что в этом месте находится сингулярность. Так же обстоит дело и с тяготением, в центре массивного объекта тоже имеется сингулярность.

Этот теоретический вывод очень не нравился Эйнштейну. Он не верил в сингулярности поля и считал, что от них нужно как-то избавляться. «Материальным частицам не место в теории поля», – писал он в журнале «Scientific American» в 1950 году. (Это его высказывание, естественно, связано с проблемой «источников», о которых говорилось раньше в связи с уравнением поля Эйнштейна).

На сходство электромагнитного и гравитационного полей и на возможность их объединения обращали внимание и до Эйнштейна. Первым взялся их объединить немецкий физик Герман Вейль. Он рассмотрел один из аспектов общей теории относительности, о котором мы говорили раньше в связи с римановой геометрией, – несохранение направления в искривлённом пространстве. Для примера рассмотрим земную поверхность, которая представляет собой двумерную поверхность Римана. Два самолёта, находящиеся на некотором расстоянии друг от друга и стартующие от экватора параллельными курсами к Северному полюсу, не будут лететь параллельно друг другу. Их курсы пересекутся на полюсе, т.е., хотя они и начали двигаться в одном направлении (на север), достигнув полюса (и даже раньше), они будут лететь в разных направлениях. Это легко проверить, взглянув на меридианы на глобусе. Из приведённого примера следует, что в искривлённом пространстве направление не сохраняется.

Вейль решил посмотреть, что будет, если не сохраняется и длина. Тогда при движении будет меняться не только курс самолёта, но и его длина. Чтобы отобразить это математически, Вейлю пришлось слегка изменить общую теорию относительности. Он предположил, что кроме обычной метрики (набора чисел или переменных, описывающих гравитационное поле) есть и другая, связанная с длиной. Может показаться, что такая процедура похожа на ловлю чёрной кошки в тёмной комнате. Ведь в реальном мире длина не зависит от пути, по которому движется тело. Однако при анализе такого предположения поразительным и загадочным образом появляются уравнения Максвелла. Всё происходит будто по волшебству, и учёные сразу же заинтересовались этим чудом.

Немного изменив общую теорию относительности, Вейль построил теорию, которая описывала и электромагнитное и гравитационное поля. Удалось ли ему объединить их? Поначалу многие считали, что удалось, но детальный анализ показал, что теория несовершенна. Первым на её недостатки указал Эйнштейн.

Проблема заключалась в подходе к понятию длины. В теории относительности имеет смысл только длина в пространстве-времени. Другими словами, длина всегда включает в себя временну?ю часть, интервал времени. Это означает, что при движении двух одинаковых объектов разными путями к одной и той же точке, будет различна не только их длина, но и соответствующий временной интервал. Этот интервал может, например, соответствовать частоте колебаний атома. Отсюда следует, что два одинаковых атома, движущихся разными путями к одной точке, будут колебаться с разными частотами. Известно, что это не так, иначе мы не могли бы наблюдать чёткие спектральные линии в свете удалённых звёзд.

Вейль вскоре признал справедливость возражений и отказался от своей теории. Её можно было бы считать неудачей (на самом деле это не совсем так – подобная идея используется в современной теории поля), но благодаря ей удалось добиться важного результата – заинтересовать учёных возможностью объединения электромагнитного и гравитационного полей. Скоро над альтернативной теорией стали работать Эйнштейн и другие учёные.

В 1921 году ещё одну интересную попытку объединения предпринял немецкий учёный Теодор Калуца. Он показал, что если уравнения Эйнштейна записать не в четырёх, а в пяти измерениях, произойдёт то же чудо – в теории появятся уравнения Максвелла. Эйнштейн наверняка задавал себе вопрос: «Неужели господь подшучивает над нами?» Теперь кроме теории гравитационного поля Эйнштейна появились две других, и обе содержали уравнения электромагнитного поля – уравнения Максвелла. В течение нескольких лет учёные проявляли к теории Калуцы значительный интерес. Правда, оставалась нерешённой одна серьёзная проблема. В реальном мире только четыре измерения – три пространственных и одно временное. Что же это за пятое измерение? Где оно прячется? Калуца понимал, что требование соответствия реальному миру заставит его как-то избавиться от пятого измерения. Он сделал это при помощи приёма математической проекции, по аналогии с двумерной тенью трёхмерного объекта. Измерений стало столько же, сколько в реальном мире, но трудности не исчезли.

В 1926 году теорию дальше развил шведский физик Оскар Клейн. Он предположил, что пятое измерение физически не проявляется, поскольку имеет вид петли, столь туго затянутой, что её не видно. Другие учёные, в том числе Эйнштейн, стали разрабатывать эту теорию, но постепенно утратили к ней интерес. Дело в том, что из неё не следовало ничего нового. Она позволяла получить уравнения Максвелла и Эйнштейна, но не более того. Правда, в последнее время эта теория вновь привлекла к себе внимание, и некоторые учёные считают, что она в конце концов позволит добиться значительных успехов. Выдающийся физик-теоретик Абдус Салам недавно назвал её «одним из четырёх крупнейших достижений на пути к реализации мечты Эйнштейна». В последние годы значительный интерес вызвал современный вариант этой теории с 11 измерениями, связанный с другой важной теорией – супергравитацией. Об этом речь пойдёт дальше.

  • Читать дальше
  • 1
  • ...
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: