Шрифт:
В Принстоне у Эйнштейна было несколько сотрудников: Хофман, Инфельд, Страус и Баргман. Много раз ему казалось, что цель достигнута, но через несколько дней или недель домик, построенный из уравнений, рассыпался. Вот что писал Страус: «Мы работали [над одной из теорий] девять месяцев. Но вот однажды вечером я нашёл класс решений, который при свете дня показал, что эта теория не имеет физического смысла». Страус пришёл в отчаянье, а Эйнштейн на следующее утро уже забыл о неудаче и начал думать над новой теорией.
Эйнштейну по-прежнему приходили в голову новые идеи, но уже не так часто, как в молодости. Кроме того, и трудностей было гораздо больше, чем при создании общей теории относительности. Раньше были хоть какие-то намёки, а теперь приходилось продираться сквозь джунгли сложнейших уравнений практически наугад. Он действовал методом проб и ошибок, проверяя то один подход, то другой.
Однажды Эйнштейна спросили, принесли ли его колоссальные усилия хоть какую-нибудь пользу. «По крайней мере, я знаю 99 путей, которые не годятся», – ответил он. Тем не менее Эйнштейн считал себя обязанным продолжать поиск: «Я знаю, что шансов на успех мало, но пытаться нужно… Это мой долг».
В Принстоне он в основном продолжал работать над своей прежней несимметричной теорией. Он записал две системы уравнений, каждая из которых открывала новые возможности. Но и тут возникли трудности. Леопольд Инфельд показал, что частицы, описываемые одной из систем, не взаимодействуют как положено – не удовлетворяют обычным хорошо известным законам электричества и магнетизма. Позднее Каллауэй показал, что так же обстоит дело и с другой системой уравнений.
Эйнштейн был убеждён, что эти уравнения – только первый шаг; потом их как-нибудь удастся слегка изменить или подправить, какой-то выход обязательно найдётся. Он продолжал свой поиск, а тем временем из жизни уходили близкие ему люди. Через три года после переезда в Принстон умерли его жена и старый друг М. Гроссман. В 1946 году с его сестрой Майей, самым близким Эйнштейну человеком, случился удар; она медленно угасала и скончалась в 1951 году.
Эйнштейн за несколько лет до кончины
К середине 50-х годов Эйнштейна стали одолевать сомнения. Все его старания ни к чему не привели. Незадолго до смерти он неохотно признал: «Представляется сомнительным, чтобы теория поля могла описывать как атомную структуру вещества и излучения, так и квантовые явления». Но несмотря на сомнения, Эйнштейн продолжал строить единую теорию поля. Даже на смертном одре он не выпускал из рук карандаш и бумагу.
Когда 13 апреля 1955 года Эйнштейна с сильными судорогами увезли в принстонскую больницу, он знал, что конец близок, но попросил принести очки и записи, чтобы продолжать работу. Глядя на осунувшиеся, опустошённые лица близких, пришедших навестить его, Эйнштейн сказал: «Не расстраивайтесь, всем суждено умереть». Он скончался 18 апреля, так и не осуществив свою мечту.
Многие трудности, с которыми столкнулся Эйнштейн при создании новой теории, были связаны не с физической, а с математической интерпретацией. Трудности эти были так велики, что возникает вопрос, не нужны ли для их разрешения новые математические методы. В истории науки часто крупные научные открытия были результатом появления новых математических приёмов. Ньютон, например, совершил свои основные открытия, создав дифференциальное исчисление. Так и Эйнштейн не смог бы построить общую теорию относительности без тензорного исчисления, которое появилось всего за несколько лет до создания этой теории.
Итак, может быть, действительно нужны новые математические методы, без которых не преодолеть возникшие трудности? Неизвестно, ведь пока мы с ними не справились. Одну трудность в теории Эйнштейна всё же удалось преодолеть – речь идёт о странностях во взаимодействии частиц. Поведение частиц не подчинялось основным законам физики. Эйнштейн попробовал применить тот же метод, что и другие физики, но позже отверг его. Он считал, что уравнения, как и в общей теории относительности, должны быть простыми и с научной точки зрения красивыми. Поэтому он и противился введению дополнительных членов. Однако в 1952 году Б. Курсуноглу, добавив один член, сформулировал теорию, в которой удалось преодолеть упоминавшуюся трудность, а в 1954 году подобную, хотя и несколько иную теорию предложил У. Б. Боннер. Для обеих теорий были получены решения, но, по общему мнению, они далеки от совершенства.
Остаются и другие фундаментальные трудности. Прежде всего, новые теории должны объяснять, почему существуют различные частицы, т.е. почему у них разные свойства (например, заряд, масса); пока это не удаётся. В других теориях, связанных с квантовой (о них речь пойдёт дальше), удалось довольно близко подойти к решению этой проблемы. Но есть ещё одна серьёзная трудность, которой мы пока не касались. До сих пор упоминались лишь гравитационное и электромагнитное поля. В то время, когда Эйнштейн работал над своей теорией, были известны только эти два поля, но, как говорилось в гл. 1, есть ещё два – сильное и слабое. В полноценную единую теорию поля должны быть включены и они.
Глава 4
Гибель звезды
Мы с вами видели, как учёные старались расширить сферу применения общей теории относительности в надежде добиться объединения гравитационного и электромагнитного полей. Их попытки отличались изобретательностью, и иногда, казалось, что они вот-вот достигнут цели, но всё же слить эти два поля воедино не удалось и по сей день.
Представим себе, что цель достигнута. Означает ли это, что все проблемы будут решены и мы получим единую теорию поля? Вряд ли, ведь ещё два поля останутся в стороне. Более того, нам нужна безотказная теория, а об общей теории относительности этого не скажешь; известно, например, что она не работает в мире атомов. Не годится она и для описания явлений, возникающих при очень высоких плотностях. Имеются в виду вовсе не те относительно высокие плотности, с которыми иногда приходится иметь дело в повседневной жизни. Речь идёт о таких плотностях, которые возникают в экстремальных космологических условиях.