Шрифт:
С этим законом что-то не так, но что именно? Как и другие детерминистические законы, он полностью предопределяет будущее.
Но если попытаться определить прошлое, ничего не получится. Допустим, мы обнаружили монету в состоянии Р. Можно быть уверенными, что предыдущим состоянием было О. Пока всё хорошо. Но попробуем сделать ещё один шаг в прошлое. Имеются два состояния, которые ведут к О, а именно Р и Б. Это создаёт проблему: получили мы О из Р или из Б? Узнать это невозможно. Вот это я и называю потерей информации, но в классической физике такого никогда не случается. Математические правила, на которых строятся законы Ньютона и максвелловская теория электромагнетизма, не оставляют сомнений: за каждым состоянием следует единственное состояние, и предшествует ему также единственное.
Другой путь, на котором может теряться информация, связан с наличием в законе доли неопределённости. В этом случае нельзя быть полностью уверенным ни в будущем, ни в прошлом.
Как я уже объяснял, квантовая механика включает элемент случайности, но в более глубоком смысле информация в ней никогда не теряется. Я проиллюстрировал это на примере с фотоном в главе 4, давайте сделаем это снова, на этот раз на примере электрона, сталкивающегося с неподвижной мишенью вроде тяжёлого ядра. Электрон подлетает слева, двигаясь в горизонтальном направлении.
Он сталкивается с ядром и рассеивается в некотором непредсказуемом новом направлении. Хороший квантовый теоретик рассчитает вероятность того, что электрон отскочит, например, в перпендикулярном направлении, но не сможет надёжно это направление предсказать.
Есть два способа проверить, сохраняется ли информация о начальном движении. Оба они включают запуск электрона назад под управлением обращённых вспять законов.
В первом случае наблюдатель проверяет, где находится электрон непосредственно перед обращением закона. Это можно сделать разными способами, в большинстве из которых в качестве зондов служат фотоны. Во втором случае наблюдатель не беспокоится о проверке; он просто реверсирует закон, никак не вмешиваясь в поведение электрона. Результаты этих двух экспериментов разделаются радикально. В первом случае электрон, двинувшись назад, оказывается в итоге в случайном месте и двигается в непредсказуемом направлении. Во втором случае, когда проверка не выполнялась, электрон в конце возвратной последовательности всегда оказывается движущимся назад в горизонтальном направлении. Когда наблюдатель в первый раз после начала эксперимента посмотрит на электрон, он обнаружит, что тот движется точно так же, как в начале, только в обратную сторону. Похоже, что информация теряется лишь тогда, когда мы активно взаимодействуем с электроном. В квантовой механике до тех пор, пока мы не взаимодействуем с системой, информация, которую она несёт, остаётся столь же нерушимой, как и в классической физике.
Атака Стивена
Нелегко найти две более мрачные физиономии, чем были у меня и Герарда 'т Хоофта в тот день в Сан-Франциско в 1983 году. Высоко над Франклин-стрит в мансарде Вернера Эрхарда была объявлена война и совершено открытое нападение на наши самые глубокие убеждения. Стивен Наглец, Стивен Храбрец, Стивен Разрушитель располагал всем тяжёлым вооружением, а его ангельская/демоническая улыбка показывала, что он об этом знает.
В этом нападении не было ничего личного. Блицкриг был нацелен против центрального столпа физики — неразрушимости информации. Часто информация запутывается до полной нераспознаваемости, но Стивен доказывал, что биты информации, упавшие в чёрную дыру, навсегда пропадают из нашего мира. На доске у него была диаграмма, которая это доказывала.
В ходе своих блестящих исследований геометрии пространства-времени Роджер Пенроуз изобрёл способ визуального представления всего пространства-времени на одной доске или одном листе бумаги. Даже если пространство-время бесконечно, Пенроуз искажал его, сжимая при помощи хитрых математических приёмов, так чтобы оно целиком умещалось в конечной области. Диаграмма Пенроуза, нарисованная на доске в особняке Вернера, изображала чёрную дыру с битами информации, падающими за горизонт. Горизонт был показан диагональной линией, и как только бит её пересекал, он не мог вырваться назад, не превышая скорости света. Диаграмма также показывала, что каждый такой бит обречён попасть в сингулярность.
Диаграммы Пенроуза — необходимый инструмент теоретических физиков, но для их понимания нужна небольшая подготовка. Вот более знакомая картина, представляющая ту же самую чёрную дыру.
Идея Стивена была проста. Биты проваливаются в чёрную дыру, подобно метафорическим головастикам из главы 2, которые по беспечности попадают за точку невозврата.
Но не тот факт, что биты информации могут навсегда скрыться за горизонтом, так обеспокоил нас с 'т Хоофтом. Падение информации в чёрную дыру ничем не хуже её запирания в очень надёжном сейфе. Здесь же происходило нечто более зловещее. Возможность спрятать информацию в сейфе вряд ли станет поводом для беспокойства, но что, если после закрытия двери сейф прямо на ваших глазах испарится? Именно это предсказывал Хокинг для чёрных дыр.
К 1983 году я уже давно связал испарение чёрных дыр и наш разговор с Ричардом Фейнманом в кафе «Уэст Энд» в 1972 году. Сама мысль о том, что чёрные дыры могут в итоге распадаться на элементарные частицы, совершенно меня не тревожила. Но вот утверждение Стивена вызвало у меня недоверие: когда чёрная дыра испаряется, захваченные ею биты информации исчезают из нашей Вселенной. Информация не зашумляется. Она необратимо и навечно уничтожается.
Стивен со счастливым видом танцевал на могиле квантовой механики, а мы с 'т Хоофтом пребывали в полном замешательстве. Для нас подобная идея ставила под угрозу все законы физики. Попытка соединить общую теорию относительности с законами квантовой механики казалась чем-то вроде крушения столкнувшихся поездов.
Я не в курсе, знал ли 'т Хоофт о радикальной идее Стивена до встречи в мансарде у Вернера, но сам я впервые услышал о ней Именно там. Как бы то ни было, идея к тому времени уже не была Новой. Стивен разработал свои аргументы несколькими годами Ранее в опубликованных статьях и выполнил хорошую домашнюю работу. Он уже рассмотрел и отмёл все возражения, которые я мог придумать, чтобы избежать его «информационного парадокса». Рассмотрим четыре из них.