Шрифт:
Прежде чем ответить на этот вопрос, позвольте мне объяснить, почему хокинговское излучение вряд ли когда-либо удастся пронаблюдать. Давайте перенесёмся в будущее, когда можно будет достаточно близко подобраться к астрономической чёрной дыре, чтобы в подробностях её рассмотреть. Но и тогда не будет шансов наблюдать её испарение по одной простой причине: ни одна чёрная дыра сейчас не испаряется. Как раз наоборот, все они поглощают энергию и растут; даже самая одинокая чёрная дыра окружена теплом. Самые пустынные области межгалактического пространства, настолько холодные, насколько это возможно, всё же теплее чёрной дыры звёздной массы. Пространство заполнено чернотельным излучением (фотонами), оставшимися после Большого взрыва. Самые холодные места во Вселенной раскалены до целых трёх градусов выше абсолютного нуля, в то время как самая тёплая чёрная дыра в сотни миллионов раз холоднее.
Самопроизвольно тепловая энергия всегда течёт от тёплого к холодному и никогда в обратном направлении, так что излучение более тёплых частей космоса перетекает в холодные чёрные дыры. Вместо того чтобы испаряться и сжиматься, как было бы при температуре космоса, равной абсолютному нулю, реальные чёрные дыры постоянно поглощают энергию и растут.
Когда-то космос был гораздо горячее, чем сейчас, а в будущем расширение Вселенной сделает его намного холоднее. В конце концов, спустя сотни миллиардов лет, он остынет настолько, что станет холоднее звёздных чёрных дыр. Когда это случится, чёрные дыры начнут испаряться. (Будет ли тогда кому это наблюдать? Кто знает, но будем оптимистами.) И всё равно испарение будет чрезвычайно медленным — чтобы увидеть хоть малейшее изменение в массе и размерах чёрной дыры, понадобится как минимум 1060 лет, — так что маловероятно, чтобы кто-нибудь сумел заметить уменьшение чёрной дыры. Наконец, даже если в нашем распоряжении будет всё время Вселенной, нет никакой надежды расшифровать информацию, уносимую хокинговским излучением.
Вели попытки дешифровать сообщения, содержащиеся в хокинговском излучении, столь безнадёжны, что нет никакого смысла их предпринимать, почему же эта проблема до сих пор так волнует физиков? Ответ звучит до некоторой степени эгоистично: мы занимаемся этим, чтобы удовлетворить своё любопытство относительно устройства мира и того, как взаимосвязаны законы физики.
На самом деле то же самое можно сказать про большую часть физики. Порой прагматичные вопросы приводят к глубоким научным исследованиям. Например, паровой инженер Сади Карно революционизировал физику, пытаясь построить улучшенный паровой двигатель. Но гораздо чаще к смене парадигм в физике приводило чистое любопытство. Любопытство — оно как зуд — всё время тянет почесать. И у физика ничто не зудит сильнее, чем парадокс, несовместимость между разными вещами, о которых, как ему кажется, он всё знает. Незнание того, как что-то работает, — тоже достаточно неприятно, но обнаружение противоречия между уже хорошо известными представлениями просто непереносимо, особенно когда сталкиваются самые фундаментальные принципы. Будет нелишним напомнить несколько таких столкновений и показать, как они приводили физику к весьма далеко идущим выводам.
Древнегреческие философы оставили парадоксальное наследие из двух несовместимых теорий, описывающих два совершенно отдельных мира явлений — небесных и земных. Мир небесных тел ныне относится к ведению астрономии. Считалось, что он лучше, чище, совершеннее — это прекрасный мир вечного и точного движения. Согласно Аристотелю, каждое небесное тело двигалось по одной из пятидесяти пяти идеальных концентрических кристаллических сфер.
Напротив, законы земных явлений считались испорченными. Движение по безобразной поверхности Земли всегда было делом тяжким. Нагруженная повозка, качаясь и скрипя, остановится, если её перестанет тянуть лошадь. Куски материи буквально падают на землю и остаются там валяться. Эти основные законы управляют четырьмя элементами: огонь поднимается, воздух парит, вода падает, земля тонет, погружаясь до самой нижней точки.
Греки, похоже, были совершенно удовлетворены этими двумя совершенно разными наборами законов. Однако Галилей и в ещё большей мере Ньютон посчитали такую дихотомию нетерпимой. Галилей просто придумал эксперимент, опровергающий представление о двух отдельных системах законов природы. Он представил, что стоит на вершине горы и бросает с неё камни: сначала так, чтобы камень упал в нескольких метрах от ног; затем сильнее, чтобы он пролетел несколько тысяч километров, прежде чем упасть; и, наконец, ещё сильнее, так что камень облетит Землю по круговой орбите. Это создаёт новый парадокс: почему законы земных явлений столь сильно отличаются от законов небесных явлений, если земной камень может стать небесным телом?
Ньютон, родившийся в год смерти Галилея, разрешил эту загадку. Он понял, что один и то же закон гравитации заставляет яблоко падать с дерева и удерживает Луну на орбите вокруг Земли, а Землю на орбите вокруг Солнца. Ньютоновские законы движения и тяготения были первой системой всеобщих физических законов. Знал ли Ньютон, насколько полезными они окажутся для будущих авиакосмических инженеров? Вряд ли его это заботило. Им двигало любопытство, а не прагматика.
В другой раз великий зуд возник в голове Людвига Больцмана, И он стал её усиленно чесать. И вновь было столкновение принципов: как может однонаправленный закон, всегда требующий возрастания энтропии, сосуществовать с обратимыми ньютоновскими законами движения? Если, как считал Лаплас, мир состоит из частиц, подчиняющихся законам Ньютона, то должна быть возможность запустить их в обратную сторону. В конце концов Больцман решил проблему, сначала поняв, что энтропия — это скрытая микроскопическая информация, а затем — что энтропия не всегда увеличивается. Время от времени происходят маловероятные события. Вы тасуете колоду, и чисто случайно карты складываются строго по возрастанию достоинства, причём черви идут за бубнами, которые следуют за трефами, а те — за пиками. Однако события, уменьшающие энтропию, — это очень редкие исключения. Больцман разрешил парадокс, сказав, что энтропия почти всегда возрастает. Сегодня статистический взгляд Больцмана на энтропию стал основанием для прикладной науки об информации, но для него самого загадка энтропии была лишь страшным зудом, который заставлял чесаться.
Интересно, что в случаях Галилея и Больцмана противоречия были выявлены не в результате нового экспериментального открытия. Ключом каждый раз оказывался правильный мысленный эксперимент. Галилеев эксперимент по бросанию камней и Больцманов — по обращению времени никогда не были осуществлены; достаточно было лишь размышлять о них. Но величайшим мастером мысленного эксперимента был Альберт Эйнштейн.
Два глубочайших противоречия не давали покоя в начале XX века. Первым был конфликт между принципами ньютоновской физики и максвелловской теории света. Принцип относительности, который мы привыкли ассоциировать с Эйнштейном, на самом деле восходит к Ньютону и даже к Галилею. Это простое утверждение о том, как выглядят законы физики из разных систем отсчёта. Чтобы понять это, представим себе циркового артиста, жонглирующего шарами, который сел на поезд, чтобы отправиться в другой город. В дороге он захотел немного потренироваться. Но он никогда не жонглировал в движущемся поезде и задаётся вопросом: «Понадобится ли мне компенсировать движение поезда всякий раз, когда я подбрасываю шар в воздух и ловлю его? Надо прикинуть. Поезд движется на запад. Так что ловить брошенный шар я должен немного восточнее». Он пробует поступить так с одним шаром. Пока тот летит, ловящая рука движется на восток, и — бах! — шар падает на пол. Жонглёр пробует снова, на этот раз уменьшая величину восточной компенсации. Опять неудача.
Надо сказать, что поезд попался очень высокого качества. Рельсы, по которым он идёт, столь гладкие, а подвеска у вагонов такая замечательная, что движение совершенно неощутимо для пассажиров. Жонглёр усмехается и говорит сам себе: «Понятно. Я просто не заметил, как поезд затормозил и остановился. Пока мы не поедем, я могу упражняться обычным образом. Вернусь-ка я обратно к старым добрым правилам жонглирования». И тут всё получается замечательно.
Вообразите же удивление жонглёра, когда, взглянув в окно, он видит местность, уносящуюся назад со скоростью добрых 150 км/ч. Глубоко озадаченный жонглёр просит разъяснений у своего друга клоуна (на самом деле гарвардского профессора физики на каникулах). И вот что отвечает клоун: «Согласно принципам ньютоновской механики, законы движения одинаковы во всех системах отсчёта, если они равномерно движутся друг относительно друга. Поэтому правила жонглирования совершенно одинаковы и в системе отсчёта, покоящейся на земле, и в системе отсчёта, движущейся вместе с плавно идущим поездом. Невозможно обнаружить движение поезда с помощью какого-либо эксперимента, целиком выполняемого внутри железнодорожного вагона. Только взглянув в окно, можно сказать, что поезд движется по отношению к земле, и даже тогда вы не сможете сказать, что именно движется — поезд или земля. Все движения относительны». Поражённый жонглёр берёт свои шары и продолжает упражняться.