Шрифт:
Догадка 'т Хоофта
Существует множество различных элементарных частиц, и, я думаю, надо честно признать, что физики не в полной мере понимают, чем одни из них отличаются от других. Но и не Задаваясь глубокими вопросами, мы можем сделать эмпирический обзор всех частиц, существование которых либо уже подтверждено экспериментально, либо предсказывается из теоретических соображений. Один из способов все их отобразить состоит в нанесении их на ось и создании своего рода спектра элементарных частиц. Будем откладывать по горизонтальной оси массу (не в масштабе), поместив слева самые лёгкие объекты, а вправо масса будет увеличиваться. Вертикальные чёрточки отмечают отдельные частицы.
На нижнем (левом) краю располагаются все знакомые нам частицы, существование которых не вызывает сомнений. Две из них не имеют массы и движутся со скоростью света — фотон и гравитон. Затем идут различные типы нейтрино, электрон, некоторые кварки, мю-лептон, ещё кварки, W-бозон, Z-бозон, бозон Хиггса и тау-лептон. Названия и подробности не имеют большого значения.
На несколько больших значениях массы располагается целая коллекция частиц, существование которых лишь предполагается, но физики в большинстве своём (включая и меня) считают, что они действительно есть [139] . По причинам, которые здесь для нас не имеют значения, эти гипотетические частицы называются суперпартнерами. За суперпартнерами находится большой интервал, который я пометил вопросительными знаками. Нельзя сказать, что мы знаем, что там ничего нет; у нас просто нет особых причин постулировать существование частиц в этой области. Также ни один из построенных или даже рассматриваемых ускорителей не обладает мощностью, достаточной для создания частиц с такой большой массой. Так что этот интервал есть терра инкогнита.
139
Мы узнаем об этом в ближайшие годы, когда заработает в полную силу европейский ускоритель БАК (Большой адронный коллайдер).
Затем с массами намного больше, чем у суперпартнеров, идут частицы Великого объединения. Они тоже гипотетические, но есть очень серьёзные основания верить в их существование — по моему мнению, даже более серьёзные, чем в случае суперпартнеров, — но их открытие в лучшем случае будет косвенным.
Самые неоднозначные частицы на моей диаграмме — это возбуждённые струны. Согласно теории струн, это очень тяжёлые вращающиеся и вибрирующие возбуждённые состояния обычных частиц. Затем, на самом верху, мы помещаем платовскую массу. До начала 1990-х годов большинство физиков ожидало, что планковская масса завершает спектр масс элементарных частиц. Но у Герарда ’т Хоофта была иная точка зрения. Он доказывал, что наверняка должны быть объекты с большей массой. Планковская масса кажется огромной в масштабе масс электрона и кварков, но она сопоставима с массой пылинки. Очевидно, что существуют вещи и потяжелее, скажем, шар для боулинга, паровоз или рождественский пирог. Но выделяются среди таких тяжёлых объектов те, которые имеют наименьшие размеры при данной массе.
Возьмём обычный кирпич. Он весит около килограмма. Мы говорим «твёрдый, как кирпич». Но кирпичи, которые кажутся нам твёрдыми, — это почти полностью пустое пространство. Приложите к ним достаточно большое давление, и их можно сжать до значительно меньшего размера. Если давление в самом деле велико, кирпич может уменьшиться до размеров булавочной головки или даже вируса. И даже тогда это будет в основном пустое пространство.
Но есть предел. Я имею в виду не практический предел, связанный с ограничениями современной технологии. Я говорю о законах природы и фундаментальных физических принципах. Каков диаметр наименьшей области, которую может занимать объект массой в один килограмм? Сразу вспоминается планковский размер, но это неправильный ответ. Объект можно сжимать, пока он не станет чёрной дырой с массой в один килограмм [140] , но не дальше, — это самый компактный объект данной массы.
140
Здесь есть техническая тонкость. Сжатие кирпича или другого объекта увеличивает его энергию, а поскольку E=m•c2, то увеличивается также и его масса. Но этот прирост можно компенсировать разными способами. Наша задача — получить наименьший возможный однокилограммовый объект.
Какого же размера будет однокилограммовая чёрная дыра? Ответ, вероятно, окажется меньше, чем вы ожидаете. Шварцшильдовский радиус (радиус горизонта) такой чёрной дыры составляет около одного миллиона планковских длин. Может показаться, что это много, но в действительности это в триллион раз меньше одиночного протона. Такая чёрная дыра будет столь же мала, как элементарная частица, так почему нам не признать её таковой?
'т Хоофт так и поступил. Или, по крайней мере, он сказал, что — нет важных проявлений, в которых такой объект фундаментально отличался бы от элементарной частицы.
Спектр элементарных частиц не обрывается на платовской массе. Он продолжается до бесконечно больших масс в форме чёрных дыр.
т Хоофт также доказывал, что чёрные дыры не могут иметь произвольную массу: подобно обычным частицам, им доступен лишь определённый дискретный набор масс. Однако при массах больше планковской они распределены настолько плотно, что совершенно сливаются [141] .
Переход от обычных частиц (или возбуждённых струн) к чёрным дырам не столь резкий, как я изобразил на рисунке. Скорее всего, спектр возбуждённых струн переходит в спектр чёрных дыр без отчётливой границы вблизи планковской массы. Это было предположение ’т Хоофта, и, как мы увидим, есть убедительные причины в него верить.
141
Почему так плотно? Это энтропия. С увеличением массы площадь горизонта увеличивается; поэтому энтропия чёрной дыры тоже растёт. Но не забывайте: энтропия означает скрытую информацию. Когда мы говорим, что масса чёрной дыры составляет один килограмм, мы в действительности имеем в виду примерно один килограмм. Более точно было бы сказать, что масса составляет один килограмм с некоторой погрешностью. Если существует много возможных чёрных дыр с массами в пределах этой погрешности, то много информации остаётся за рамками нашего описания. Эта отсутствующая информация и есть энтропия чёрной дыры. Зная, что энтропия чёрной дыры растёт с массой, 'т Хоофт заключил, что спектр масс чёрных дыр должен становиться очень плотным и размазываться.
Обсчитывая струны и чёрные дыры
Алисин аэроплан — это метафора того, как внешний вид зависит от зрителя. Алиса, сидя в кокпите, не видит на горизонте ничего удивительного. Но если смотреть извне чёрной дыры, кажется, что у аэроплана становится всё больше и больше пропеллеров, которые постепенно охватывают весь горизонт. Алисин аэроплан также служит метафорой того, как работает теория струн. Когда струна падает к горизонту, внешний наблюдатель будет видеть, как материализуется всё больше и больше фрагментов струны, которые постепенно заполняют горизонт.
Наличие энтропии у чёрных дыр предполагает, что у них есть скрытая микроскопическая структура, подобно молекулам в ванне тёплой воды. Но само по себе существование энтропии не даёт никакого намёка на природу «атомов горизонта», хотя и позволяет грубо оценить их количество.
В Алисином мире атомы горизонта — это пропеллеры. Возможно, и в самом деле существует теория квантовой гравитации, основанная на пропеллерах, но, я думаю, что на эту роль больше подходит теория струн, по крайней мере сегодня.