Вход/Регистрация
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
вернуться

Беллос Алекс

Шрифт:

Лотерея в Виргинии была самым большим из сорванных Манделом джекпотов, доведя счет его побед, одержанных после отъезда из Румынии, до 13. Служба внутренних доходов США (The U.S. Internal Revenue Service), ФБР, и ЦРУ проявили интерес к синдикату Мандела и попытались расследовать его методы участия в лотерее, но ничего противоправного эти уважаемые организации не нашли. Ведь нет ничего незаконного в том, чтобы скупить все комбинации, хотя это и слегка отдает аферой. Мандел в настоящее время отошел от дел, связанных с лотереями, и наслаждается жизнью на одном из тропических островов южной части Тихого океана [59] .

59

В марте 2011 года житель штата Нью-Йорк выиграл в лотерею «Мега-Миллионс» рекордный джекпот в размере 319 миллионов долларов. За всю историю лотереи это самая большая сумма, которая будет выплачена по одному выигрышному билету. ( Примеч. перев.)

* * *

Особенно выразительное и наглядное представление случайности изобрел в 1888 году Джон Венн (1834–1923). Венн, быть может, — наименее яркий из всех математиков, имя которых постоянно на слуху. Он был кембриджским профессором и англиканским клириком и провел большую часть жизни, занимаясь составлением сборника биографий 136 000 выпускников Кембриджа, получивших дипломы до 1900 года. Никаких революционных прорывов в своей науке он не совершил, но тем не менее разработал замечательный способ для объяснения логических рассуждений с помощью пересекающихся окружностей. Хотя в предшествующие столетия и Лейбниц, и Эйлер рассматривали нечто очень похожее, диаграммы были названы в честь Венна [60] . Гораздо меньше известно, что Венн придумал блестящий способ для иллюстрации случайности.

60

В России распространено название «диаграммы Эйлера — Венна». ( Примеч. перев.)

Представим себе точку, поставленную в центре белого листа бумаги. Из этой точки выходят восемь возможных направлений: на север, северо-восток, восток, юго-восток, юг, юго-запад, запад и северо-запад. Припишем этим направлениям числа от 0 до 7. Случайным образом выберем число от 0 до 7 и проведем отрезок прямой в направлении, отвечающем полученному числу. Будем делать так снова и снова, в результате чего на бумаге появится некая кривая. Венн проделал такое для самой непредсказуемой из известных ему числовых последовательностей — десятичного разложения числа (откуда исключил восьмерки и девятки) [61] . Результат, писал он, представлял собой «очень правильное наглядное представление случайности».

61

См. главу 4. ( Примеч. перев.)

Построенный Венном чертеж стал, по-видимому, самой первой диаграммой «случайного блуждания». То же самое нередко называют «блужданием пьяницы», апеллируя к более выразительной картинке, на которой вместо исходной точки — фонарный столб, а вместо числа — человек в состоянии сильного опьянения, совершающий неуверенные движения. Один из самых очевидных вопросов, которые здесь напрашиваются, — насколько далеко пьяница сумеет отойти от столба, пока еще стоит на ногах? В среднем, чем дольше он будет блуждать, тем дальше от столба окажется. Выяснилось, что расстояние между пьяницей и фонарем растет как квадратный корень из времени прогулки. Итак, если за один час наш пьянчужка в среднем проходит один квартал, то, если дать ему четыре часа, он пройдет два квартала, а через девять часов — три.

Во время своего случайного блуждания наш подвыпивший герой будет иногда ходить кругами, повторяя собственные шаги. Какова вероятность, что он в конце концов снова набредет на фонарный столб? Как ни странно, ответ таков: 100 процентов! Он может блуждать годами в самых отдаленных уголках, но будьте уверены — если дать ему достаточно времени, он в конце концов обязательно вернется в исходную точку.

Представим себе, что пьяница блуждает в трех измерениях. Назовем это «полетом одурелого шмеля». Шмель стартует из некоторой точки в трехмерном пространстве и летит в случайном направлении на фиксированное расстояние по прямой. Затем он останавливается, переводит дух и снова, жужжа, срывается с места в другом случайном направлении, пролетая то же самое расстояние. И так далее. Какова вероятность, что в конце концов он вернется в точку своего старта? Ответ: всего 0,34, то есть около трети. Не правда ли, довольно странно, что в двух измерениях возвращение пьяницы к фонарному столбу представляло собой абсолютную определенность, но еще более странно то, что шмель, жужжащий в воздухе неограниченно долго, с высокой вероятностью никогда не вернется домой.

Первый в мире пример случайного блуждания. Из книги Джона Венна «Логика шанса» (1866). Траектория задается цифрами из разложения числа , начиная с 1415

Главный герой романа-бестселлера Люка Рейнхарта «Дайсмен» («Человек — Игральная кость») принимает жизненно важные решения, бросая игральную кость. Представим себе «Человека-монету», который принимает решения, подбрасывая монету. Если, скажем, у него выпадает орел, он передвигается на один шаг вверх по странице, а если решка — то вниз. Путь нашего Человека-монеты подобен блужданиям уже знакомого нам пьяницы, но в одном измерении, ведь он может смещаться только вдоль одной и той же прямой. Изобразим на графике случайные блуждания, описываемые вторым из двух отчетов о 30 бросаниях монеты, приведенных ранее. Получается вот что:

Блуждание изображается изломанной линией, состоящей из пиков и провалов. Если продолжить упражнение и бросать монету все большее число раз, то проявится тенденция. Линия будет «раскачиваться» вверх и вниз, причем все сильнее и сильнее. Человек-монета будет двигаться, удаляясь все дальше и дальше от начальной точки в обоих направлениях. Ниже приведены графики, которые я составил для путешествий шести Человек-монет, каждый для 100 бросаний монеты.

Если мы вообразим себе, что в одном направлении на определенном расстоянии от начальной точки стоит барьер, то окажется, что в конце концов Человек-монета уткнется в него со 100-процентной вероятностью. Неизбежность этого столкновения весьма поучительна при анализе закономерностей, связанных с играми.

Вместо того чтобы отправлять Человека-монету в путешествие в пространстве, можно использовать траекторию его движения как иллюстрацию состояния его банковского счета. А подбрасывание монеты пусть будет азартной игрой, в которую он играет. При выпадении орла он выигрывает 100 долларов, а решка означает проигрыш 100 долларов. Сумма на его счете будет колебаться — то есть вести себя подобно волнам все большей величины. Установим барьер: Человек-монета не может продолжать игру, если на его счете о долларов. Оказывается, он гарантированно наткнется на этот барьер! Другими словами, в любом случае его ждет банкротство. Этот феномен известен под экспрессивным названием разорение игрока.

  • Читать дальше
  • 1
  • ...
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: