Вход/Регистрация
Логика случая. О природе и происхождении биологической эволюции
вернуться

Кунин Евгений Викторович

Шрифт:

Несмотря на существенные различия в механизмах и невзирая на кажущуюся «расточительность» дарвиновской модальности, которая контрастирует с потенциальной эффективностью эволюции по Ламарку (см., однако, дискуссию ниже в этой главе), схемы Дарвина и Ламарка похожи: у обеих конечные результаты преимущественно адаптивны, и в этом отношении, они радикально отличаются от случайного дрейфа. Последний процесс может быть обозначен как «райтовская модальность эволюции», в честь Сьюэлла Райта, одного из отцов-основателей популяционной генетики и создателя концепции случайного генетического дрейфа (см. рис. 9–1 и гл. 2). В последующих разделах я расскажу о недавних исследованиях некоторых феноменов, которые, на мой взгляд, заставляют нас возвратиться к одной из версий ламарковского сценария в качестве важного вклада в эволюцию на уровне геномов и организмов.

Ламарковские и квазиламарковские явления в эволюции

Системы антивирусного иммунитета CRISPR-Cas у прокариот: демонстрация аутентичног омеханизма по Ламарку

Система антивирусной защиты и адаптивного иммунитета у архей и бактерий, которая в последнее время была изучена благодаря целой серии открытий, часто случайных, по всей видимости, работает непосредственно через предложенный Ламарком механизм. Такая система известна как CRISPR-Cas (или просто CRISPR, для краткости). Аббревиатура CRISPR означает «короткие палиндромные повторы, регулярно расположенные группами», а Cas – «белки, ассоциирующиеся с CRISPR» (Deveau et al., 2010; Karginov and Hannon, 2010; Koonin and Makarova, 2009; van der Oost et al., 2009). CRISPR-повторы содержат короткие уникальные участки-спейсеры, встроенные внутри палиндромных повторяющихся блоков. Геномы архей и бактерий содержат кассеты (группы тандемно организованных, тесно сцепленных, функционально связанных локусов) с многочисленными CRISPR-блоками – во многих случаях более одной кассеты на геном. Хотя CRISPR-повторы были открыты еще в 1980-х, за годы до первых расшифровок полных бактериальных геномов, только гораздо позже стало понятно, что CRISPR-кассеты в геномах практически всегда примыкают к группе cas– генов. Cas-гены кодируют различные ферменты, участвующие в метаболизме нуклеиновых кислот, включая нуклеазы, геликазы и, возможно, полимеразы [90] .

90

История открытия cas– генов интересна и поучительна сама по себе, хоть и выходит за рамки основной темы этой книги. В нашем исследовании перекрывающихся цепочек генов в геномах прокариот, проделанном в 2002 году (см. гл. 5), группа cas– генов оказалась второй по величине связной геномной окрестностью после рибосомного супероперона (I. B. Rogozin, K. S. Makarova, J. Murvai, E. Czabarka, Y. I. Wolf, R. L. Tatusov, L. A. Szekely, and E. V. Koonin. Connected Gene Neighborhoods in Prokaryotic Genomes. Nucleic Acids Research 30 [2002]: 2,212—2,223). После тщательного анализа последовательностей Cas-белков мы предсказали, что эти белки представляют собой неизвестную ранее систему репарации ДНК (K. S. Makarova, L. Aravind, N. V. Grishin, I. B. Rogozin, and E. V. Koonin. A DNA Repair System Specific for Thermophilic Archaea and Bacteria Predicted by Genomic Context Analysis. Nucleic Acids Research 30 [2002]: 482–496). Такой прогноз, казалось, имеет смысл, если вспомнить различные роли нуклеаз, геликаз и полимераз в репарации. К сожалению, мы не исследовали соседних повторов. Только после независимого открытия фагоспецифичных спейсеров (A. Bolotin, B. Quinquis, A. Sorokin, and S. D. Ehrlich. Clustered Regularly Interspaced Short Palindrome Repeats (CRISPRs) Have Spacers of Extrachromosomal Origin. Microbiology 151 [2005]: 2,551—2,561; F. J. Mojica, C. Diez-Villasenor, J. Garcia-Martinez, and E. Soria. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution 60 [2005]: 174–182) все концы сошлись и появилась гипотеза о механизме антивирусного иммунитета, опосредованного CRISPR-Cas (K. S. Makarova, N. V. Grishin, S. A. Shabalina, Y. I. Wolf, and E. V. Koonin. A Putative RNA-Interference-Based Immune System in Prokaryotes: Computational Analysis of the Predicted Enzymatic Machinery, Functional Analogies with Eukaryotic RNAi, and Hypothetical Mechanisms of Action. Biology Direct 1 [2006]: 7). Впоследствии ее основные положения были подтверждены опытным путем (R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 315 [2007]: 1,709—1,712; F. V. Karginov and G. J. Hannon. The CRISPR System: Small RNA-Guided Defense in Bacteria and Archaea. Molecular Cell 37 [2010]: 7—19). Из этого следует извлечь важный (и, в ретроспективе, самоочевидный) урок о том, что при интерпретации наблюдений следует принимать во внимание как можно больше фактов. Примечательный последний поворот в этой истории состоит в том, что по крайней мере один из Cas-белков, Cas1, присутствующий во всех системах CRISPR, действительно, по-видимому, способствует не только вставке спейсеров в CRISPR-кассеты, но и участвует в некоторых типах репарации (M. Babu, N. Beloglazova, R. Flick, C. Graham, T. Skarina, B. Nocek, A. Gagarinova, O. Pogoutse, G. Brown, A. Binkowski, S. Phanse, A. Joachimiak, E. V. Koonin, A. Savchenko, A. Emili, J. Greenblatt, A. M. Edwards, and A. F. Yakunin. A Dual Function of the CRISPR-Cas System in Bacterial Antivirus Immunity and DNA Repair. Molecular Microbiology 79 [2011]: 484–502). В конце концов, оказывается, что первоначальный прогноз не был полностью ошибочным, хотя принципиальная новизна открытия и была упущена.

После того как было показано, что некоторые из уникальных спейсеров в CRISPR-кассетах идентичны фрагментам генов бактериофагов и плазмид, была высказана гипотеза о том, что CRISPR-система использует полученные от фагов последовательности в качестве молекул-шаблонов для разрушения мРНК-фагов аналогично эукариотической РНК-интерференции (РНКи) (Makarova et al., 2006). Хотя большую часть деталей механизма еще предстоит выяснить, главные предсказания этой гипотезы к настоящему времени подтверждены: наличие спейсера, последовательность которого в точности комплементарна мишени, то есть соответствующей последовательности в фаговом геноме, необходимо для резистентности [91] ; РНК-шаблоны, содержащие CRISPR-спейсеры, образуют комплексы с несколькими Cas-белками и используются для борьбы с инфекцией; могут приобретаться новые спейсеры, которые делают бактерию или архею устойчивой к соответствующим фагам. Примечательно, что, судя по всему, некоторые CRISPR-системы нацелены на вирусные мРНК, как и постулирует изначальная гипотеза, тогда как другие уничтожают вирусную ДНК непосредственно (Barrangou et al., 2007; Brouns et al., 2008; Hale et al., 2009; Marraffini and Sontheimer, 2008).

91

Системы CRISPR-Cas чрезвычайно разнообразны, в том числе и в том, что касается молекулярных механизмов активности; точная комлементарность спейсера и мишени важна лишь для некоторых из них, в то время как другие удовлетворяются частичной комплементарностью, как РНК у животных (Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, van der Oost J, Brouns SJ, Severinov K. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci USA. 2011 Jun 21;108(25):10098-103).

Рис. 9–2. Система CRISPR-Cas и механизм ее действия как пример ламарковской эволюции. Заимствовано из Koonin and Wolf, 2009b.

Механизм наследственности и эволюции генома, реализованный в CRISPR-Cas системе, представляется в полной мере ламарковским (см. рис. 9–2).

• Стимул из внешней среды (эгоистичный генетический элемент, такой как вирус) используется для непосредственного изменения генома.

• Возникающая модификация (уникальный элемент-специфичный спейсер) напрямую влияет на фактор, вызвавший изменение.

• Модификация явно адаптивна и наследуется потомками клетки, столкнувшейся с эгоистичным элементом.

CRISPR-опосредованная наследственность, по-видимому, не очень устойчива: даже близкородственные геномы архей и бактерий не содержат одинаковых вставок. Подразумевается, что, как только бактерии или археи перестают сталкиваться с конкретным агентом (вирусом), соответствующие спейсеры быстро вырождаются. В самом деле, вставки вряд ли могут быть эволюционно стабильными в отсутствие сильного селективного давления, поскольку единственная мутация сразу делает их бесполезными. Кроме того, во многом подобно адаптивной иммунной системе у животных, CRISPR-системы в редких случаях демонстрируют свойство аутоиммунности: спейсеры, идентичные фрагментам обычных генов клетки-хозяина, вставляются в CRISPR-кассеты и, предположительно, нарушают экспрессию соответствующих генов (Stern et al., 2010). Несмотря на некоторую эфемерность наследственности CRISPR, ее ламарковский характер неоспорим: адаптивная эволюция организмов происходит непосредственно в ответ на внешний фактор среды и результатом является конкретная адаптация (резистентность) к данному специфическому фактору [92] .

92

Последние исследования показывают, что дело обстоит сложнее: в механизме действия CRISPR-Cas-систем, наряду с ламарковской схемой, явно прослеживается и дарвиновский путь эволюции, включающий случайные изменения в геноме с последующей селекцией. Показано, что первоначально CRISPR-Cas-система интегрирует многочисленные фрагменты генома фага, но затем лишь очень небольшая доля исходных спейсеров фиксируется под действием отбора и обеспечивает устойчивость данному фагу (Paez-Espino D, Morovic W, Sun CL, Thomas BC, Ueda K, Stahl B, Barrangou R, Banfield JF. Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat Commun. 2013;4:1430).

Другие (квази)ламарковские системы, функционирующие по принципу CRISPR

Интересно и поучительно сравнить особенности наследственности и эволюции в случае CRISPR-системы с соответствующими характеристиками эукариотической РНК-интерференции (RNAi) и, в частности, малых интерферирующих (si) РНК и PIWI-взаимодействующих (pi) РНК, то есть с защитными системами эукариот, в общих чертах функционально аналогичными CRISPR. Для начала вспомним примечательный и довольно загадочный факт: белковый аппарат эукариотической РНК-интерференции не гомологичен Cas-белкам; белковые компоненты этой сложной эукариотической системы были собраны из прокариотических доменов, которые первоначально были вовлечены в исполнение других функций (см. гл. 7; Shabalina and Koonin, 2008). Очевидное отсутствие ортологов для любого из Cas-белков в клетках эукариот позволяет предположить, что эта система каким-то образом исключена из эукариотического мира отбором, хотя лежащее в основе селективное давление представляется смутно. Единственным намеком может служить общая причина утраты оперонов у эукариот, которую мы обсуждали в главе 7: опероны исчезают под действием рекомбинационного храповика, и гены, которые требуют особенно тесной координации экспрессии или же вредны вне контекста действия оперона, устраняются путем очищающего отбора [93] .

93

Дальнейшее, еще более детальное изучение CRISPR-Cas-систем заставляет считать это объяснение весьма правдоподобным. Действительно, CRISPR-Cas локусы бактерий и архей включают токсин-антитоксинные элементы, которые, видимо, функционируют в тесном взаимодействии с собственно иммунным компонентом CRISPR-Cas (Makarova KS, Anantharaman V, Aravind L, Koonin EV. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol Direct. 2012 Nov 14;7:40).

В отличие от CRISPR-Cas, системы РНК-интерференции не используют механизм Ламарка напрямую. Тем не менее они явно демонстрируют характерные «ламарковские» черты. Система siРНК (отдельный вид РНКи) «обучается» внешним агентом (вирусом) путем генерации малых интерферирующих РНК, комплементарных вирусным генам (Kim et al., 2009). Этот процесс, безусловно, имеет сходство с CRISPR-механизмом, но, кроме того, напоминает, по крайней мере метафорически, «изменение повадок» по Ламарку. Более того, система имеет некоторый уровень памяти, поскольку во многих организмах миРНК амплифицируются, и устойчивость к соответствующему вирусу может сохраняться в течение нескольких поколений (Ding, 2010). Подобная стабильность миРНК служит одним из проявлений получающего все более широкое признание РНК-опосредованного наследования, которое иногда называют парамутацией (Hollick, 2010). Ключевое отличие от CRISPR состоит в том, что (насколько известно в настоящее время) миРНК не записываются в геном, так что здесь имеет место лишь эпигенетическая наследственность ламарковского типа, но не полноценная генетическая наследственность.

Однако даже это различие размывается в случае piРНК, которые являются производными транспозонов. Это наиболее распространенные малые РНК в животном мире, образующие быстро растущие геномные кластеры, обеспечивающие защиту от мобильных элементов в зародышевой плазме (Bourc’his and Voinnet, 2010). В случае этих малых РНК, как и в ситуации с CRISPR, фрагменты генома мобильного элемента интегрируются в геном хозяина, где они быстро размножаются, видимо, под давлением отбора на эффективную защиту (Assis and Kondrashov, 2009). Такая система, похоже, отвечает всем критериям наследования приобретенных признаков и ламарковского режима эволюции. Здесь особенно примечательно, что изолированная зародышевая плазма, будучи важнейшим изобретением многоклеточных эукариот, которые, по-видимому, блокируют некоторые формы (квази)ламарковского наследования, такие как горизонтальный перенос генов (см. обсуждение далее в этой главе), сама выработала в процессе эволюции особую версию механизма ламарковского типа.

  • Читать дальше
  • 1
  • ...
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: