Вход/Регистрация
Искусственный разум
вернуться

Чачко Алексей Григорьевич

Шрифт:

Размытое множество устроено совсем иначе. Если это и клуб, то клуб с мягкими правилами: вместо непременного членства здесь большая или меньшая склонность, степень принадлежности, мера близости. Скажем, утверждение "молодой" будет выглядеть на языке размытых множеств так:

молодой =0,1/15+0,9/20+1,0/25+0,7/30+0,2/40+0,1/50

Прочтем эту запись. Числа 15, 20, 25, 30, 40 и 50 означают возраст. Молодому человеку может быть и 15, и 20, и 25, и 30, и 40, и 50 лет. К каждому возрасту привешен своеобразный ярлычок - мера близости. Для 15 лет эта мере невелика - всего 0,1. Столь же мала она для 50 лет. Зато для 25 лет она максимальная - 1,0.

Значит, "молодой" - множество возрастов, в которое, безусловно, входит 25 лет, чуть в меньшей степени 20 лет, еще в меньшей - 30 и совсем в малой - 15 или 50. Перед нами спектр чисел, передающий оттенки понятия "молодой". Если сравнить смысл слова "молодой" со сложной краской, то формула представляет собой как бы рецепт составления ее из простых тонов: возьми 0,1 часть возраста "15 лет", смешай ее с 0,9 частями возраста "20 лет", добавь к смеси 1,0 части оттенка "25 лет"...

Спору кет, любопытная запись. Но полезная ли? Понятие "молодой" мы определили, а дальше что? Предположим, о человеке говорят - "очень молодой". Позволяет ли теория вычислить, что это означает? Да. Вот результат:

очень молодой=молодой2.

Вы не ошиблись, читатель, правая часть формулы гласит: "молодой в квадрате". В точности как в школе: у=х2.

Ну а если сказать - "не очень молодой и не очень старый", смысл сего нечеткого заявления можно исчислить? Пожалуйста:

не очень молодой и не очень старый= (молодой)2 (старый)2.

Перед нами снова формула, в которой, быть может, не все символы вам знакомы. И бог с ними - не стоит тратить время на подробности, потому что вам отлично знакомо главное, потому что в новой одежде вы узнали старых друзей: у=х2, z=х2-у2 и другие, и прочие, и прочие. Алгебра это!

Размытые множества - основа для алгебры нечетких объектов. Алгебра Заде имеет свои правила, с помощью которых происходит объединение и разделение множеств, концентрация и разрежение элементов, уменьшение и увеличение нечеткости.

Да, да, в фузи-алгебре есть правила, преобразующие расплывчатые вещи в еще более расплывчатые. Был, скажем, мужчина, а получился не мужчина, а облако в штанах. Усиление расплывчатости - часто используемый людьми прием.

Каждому из нас. приходилось в ответ на вопрос, знакомы ли мы с определенным предметом, отвечать: "более или менее", "в некоторой степени", "слегка". Мы наращиваем нечеткость, когда хотим проявить осторожность и не делать опрометчивых суждений. Нечеткая алгебра возвела человеческую уловку в правило математики.

Фузи-алгебра, как и всякая алгебра, работает с двумя основными вещами - переменной и функцией. Только переменные здесь непривычные - слова, а не числа. Тем не менее словесная переменная, как и числовая, может пробегать ряд значений. Скажем, переменная "возраст" пробегает значения: "младенческий", "детский", "юношеский", "молодой", "средний", "пожилой", "старый", "дряхлый". Переменная пробегает ряд значений, а вместе с ней пробегает наша жизнь. Чему быть, того не миновать; остается только любоваться формулой:

дряхлый=очень-очень старый=старый4.

Остается еще раз удивиться мудрости Р. Декарта. Это он стал первым записывать показатель степени в виде маленькой цифры над переменной. И это он ввел в науку само понятие переменной. Ф. Энгельс так оценил нововведение: "Поворотным пунктом в математике была Декартова переменная величина, Благодаря этому в математику вошли движение и тем самым диалектика".

Про главную идею Р. Декарта резонно еще сказать "могучая". И тогда сегодняшняя нечеткая алгебра окажется не только плодом трудов Л. Заде, но и результатом творческого импульса, данного науке Р. Декартом.

Математика нечетких объектов, конечно, математика сведения. Внешний, физический мир сначала сводится к словесному описанию. Словесное описание, в свой черед, сводится к функциям от размытых переменных. Размытые переменные сводятся к простейшим переменным, а эти амебы нечеткой математики уже измерены и описаны с помощью чисел (вспомните наше "молодой").

В математике нечетких объектов числа ушли с авансцены, чтобы работать за кулисами. Размытые категории обретают определенность за счет "числовой подложки". Старая математика не исчезает, только стушевывается, уходит с капитанского мостика в машинное отделение и там трудится изо всех сил.

Незачем сбрасывать старую математику с атомохода современности: застопорится атомоход. Но изменить взгляд на математику стоит.

Дело математики не только количественные явления, но и качественные, не только числа, но и смыслы. Дело математики не только точность, но и расплывчатость.

В мире расплывчатого математика только-только научилась ходить. Нечеткие интегралы и дифференциалы! А они возможны? Нечеткая логика - яркая снаружи игрушка! А внутри? Вероятность нечеткого события! А это еще что за птица?

  • Читать дальше
  • 1
  • ...
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: