Шрифт:
Полинг, сравнивая нормальный и серповидный гемо-глобины, обнаружил, что первый оказался более кислым. Это могло, по его мнению, указывать на то, что нормальная молекула гемоглобина содержит несколько больше кислых остатков в пептидных цепях. Однако методы применявшегося тогда качественного анализа не позволили Полингу обнаружить какую-либо разницу в аминокислотном составе исследовавшихся молекул.
Только десять лет спустя стало возможным перебрать почти 600 аминокислотных остатков, чтобы установить, какой же из них дефектный. Это сделал в 1959 году американский биохимик, занимающийся молекулярной биологией, Верной Ингрэм.
Поскольку перед ним не стояла задача исследования пространственной структуры белка, Ингрэм использовал довольно простой хроматографический метод. Однако он его несколько усовершенствовал, для того чтобы более определённо выявить различие в аминокислотных остатках.
Хроматография основана на разделении смесей. В данном случае Ингрэм применил хроматографию на бумаге. Скажем, если бы мы капнули смесью разноцветных чернил на промокашку, то они по-разному расползлись бы на ней. Зная «степень расползания» для чернил каждого цвета, можно легко установить их наличие в капле. Совмещая хроматограммы разных гемоглобинов, выявляют несовпадающие участки и определяют, к каким именно аминокислотным остаткам они относятся. Этот метод получил шутливое название «метода отпечатков пальцев». Однако здесь все не так просто, как в дактилоскопии. Из-за незначительного различия в строении остатков, их часто невозможно отличить даже по хроматограмме. Поэтому Ингрэм прибегнул к маленькой хитрости, поместив бумагу с исследуемым материалом в электрическое поле. Тем самым удалось ещё больше растащить аминокислоты, так как под воздействием электрического тока путь зависел ещё и от их электрического заряда, обусловленного кислотными или щелочными свойствами.
Когда сравнили «отпечатки пальцев» нормального и серповидного гемоглобинов, они не совпали только в одном месте. Оно соответствовало более кислой среде в нормальном гемоглобине. Полинг оказался прав. Теперь оставалось самое главное и интересное: установить, какие именно остатки не совпадают. Оказалось, что «более кислая» глутаминовая кислота нормального гемоглобина была замещёна валином в серповидном. Так установили причину этой молекулярной, как назвал её Полинг, болезни.
Сегодня открыты ещё сотни молекулярных болезней, из которых многие вызваны «опечатками» в молекуле гемоглобина. Такие болезни крови называют гемоглобинопатии. В настоящее время известно около 400 аномалий гемоглобина. Почему даже единственная замена среди множества аминокислот приводит к печальным последствиям? Все дело в строении аминокислотных остатков, которое обусловливает их свойства. В последнее время удалось разобраться в механизме некоторых молекулярных болезней. Вот как объясняется, например, одна из гемоглобинопатии, при которой в аномальной молекуле гемоглобина два атома железа из четырёх легко окисляются до трёхвалентных. При этом кровь больных имеет в 2 раза меньшую кислородную ёмкость, чем нормальная..
Устойчивость двухвалентного состояния железа в молекуле гемоглобина обеспечивается расположенным рядом аминокислотным остатком — гистидином. В его состав входит имидазольное кольцо (такое же как и пиррольное кольцо, но с лишним атомом азота в одном из углов), способное создавать определённое электрическое поле, которое прочно удерживает электроны атома железа. Если же происходит «опечатка» в наследственном механизме — и место гистидина занимает чужой аминокислотный остаток— тирозин, то картина резко меняется. Тирозин тоже имеет кольцо, но совсем другое — оксибензольное, которое уже не обладает определённой электрической активностью и не может уберечь атом железа от окисления. Он при этом переходит в трёхвалентное состояние и теряет способность переносить кислород.
Конечно, сегодня ещё рано говорить об изгнании «беса» наследственности, путающего генетические карты нашего организма; но бороться с некоторыми гемоглобинопатиями уже можно, тем более зная породившие их причины. Лайнус Полинг, например, ратует за применение витамина С. Это хороший восстановитель — он может способствовать переходу трёхвалентного железа дефектного гемоглобина в двухвалентное.
Железо и... молоко
О гемоглобииопатиях узнали совсем недавно; о других же болезнях крови было известно очень давно. Пожалуй, раньше всего люди познакомились с малокровием, или, как его называют врачи, анемией. Причин, вызывающих анемию, множество. Достаточно сказать, что сегодня медики насчитывают несколько сот разновидностей этой самой распространённой болезни крови.
Вместе с кровью из тела уходит жизнь. Эту истину усвоили ещё первобытные люди, наблюдая за истекающими кровью воинами или ранеными животными. С тех далёких времён кровь стали отождествлять со здоровьем, с жизненной силой. Бледный, хилый человек считался малокровным; часто так оно и было. Бледность, действительно, первый симптом анемии.
Издавна уже догадывались, что малокровие надо лечить препаратами железа. Именно железо как общеукрепляющее средство было известно и древним китайцам, и египтянам, и грекам. Строки, посвящённые целительным свойствам железа, можно найти и у величайшего врача древности Гиппократа, и в «Каноне врачебной науки» у знаменитого целителя средневековья Ибн Сины.
Разумеется, в прошлом советы применять в лечебных целях железо нередко были наивны; но нам с вами важно отметить по крайней мере интуитивное понимание и учёными и медиками тех времён его роли в жизнедеятельности организма.
В обширном арсенале средств совремённой медицины железо остаётся неизменным компонентом при лечении малокровия.
Ещё в конце прошлого века немецкий физиолог.и биохимик Густав Бунге, работавший одно время в Дерптском университете в России, на конгрессе в Мюнхене заявил, что «железо следует покупать не в аптеке, а на рынке и в первую очередь яйца и шпинат». Он имел в виду, что организм — в том числе и здоровый организм — должен получать необходимое количество железа прежде всего из продуктов питания.
Приведём краткую таблицу, демонстрирующую содержание железа в 100 г некоторых продуктов питания (в мг):
фасоль 12,4
говяжья печень 9,8
гречневая крупа 8,0
шпинат 3,0
яйцо (1 шт.) 2,7
хлеб до 2,8
яблоки 2,2
молоко 0,1
Обращает на себя внимание низкое содержание железа в молоке. Это, казалось бы, нелогично: ведь известно, что организм младенца остро нуждается в железе, особенно в первые недели после "появления на свет. А дело в следующем. Чем меньше организм, тем больше относительная его поверхность, тем больше теряет он тепла (вот почему маленьких детей хорошо укутывают). Для поддержания необходимой температуры тела процессы обмена и дыхания у детей должны происходить весьма интенсивно, что обеспечивается значительным потреблением железа для работы ферментов. В организме плода в период внутриутробного развития содержание железа невелико: потребность в нем удовлетворяется за счёт материнской крови. Незадолго до рождения содержание железа резко увеличивается, и ребёнок появляется на свет с некоторым запасом этого необходимейшего металла. Запаса железа хватает в среднем на полгода — дальше он истощается, и это обстоятельство является как бы сигналом растущему организму: пора отказываться от материнского молока и переходить на дополнительное питание. Отметим, что таким образом железо «сигналит» детёнышам едва ли не всех млекопитающих.