Шрифт:
При таких преимуществах 12-ричной системы неудивительно, что среди математиков раздавались голоса за полный переход на эту систему. Однако мы уже чересчур тесно сжились с 10-тичной системой, чтобы решаться на такую реформу.
Вы видите, следовательно, что дюжина имеет за собою длинную историю и что число 12 не без основания очутилось в галлерее числовых диковинок. Зато его соседка - «чертова дюжина», 13, фигурирует здесь не потому, что чем-либо замечательна, а скорее именно потому, что ничем не замечательна, хотя и пользуется такой мрачной славой: разве не удивительно в самом деле, что ровно ничем не выделяющееся число могло стать столь «страшным» для суеверных людей? [65]
65
Как распространено это суеверие даже и в нашу эпоху, видно из того, что при устройстве электрического трамвая в Ленинграде (тогда Петербурге) первое время не решались вводить маршрута № 13, а пропустив его, сразу перешли к № 14: опасались, что публика побоится ездить в вагонах с таким «роковым» номером. Любопытно то, что в Ленинграде есть немало домов, где 13-й номер квартиры пропущен… В гостиницах также нередко отсутствует комната № 13. Для борьбы с этим ничем не обоснованным числовым суеверием на Западе (в Англии) учреждены даже особые «клубы числа 13».
В следующей витрине арифметической кунсткамеры перед нами
Число 365
Оно замечательно прежде всего тем, что определяет число дней в году. Далее, при делении на 7 оно дает в остатке 1: эта несущественная, казалось бы, особенность числа 365 имеет большое значение для календаря. От нее зависит то, что каждый простой (не високосный) год кончается тем днем недели, каким он начался; если, например, день нового года был понедельник, то и последний день года будет понедельник, а следующий год начнется со вторника. По той же причине - благодаря остатку 1 от деления 365 на 7 - было бы нетрудно так изменить наш календарь, чтобы определенная календарная дата всегда приходилась на один и тот же день недели, - например, чтобы 1-го мая каждый год было воскресенье. Для этого достаточно было бы лишь первый день года вовсе не вводить в счет числа дней, называя его не «1 января», а просто «день нового года»; 1-м января будет следующий день. Тогда остальное число дней года, 364, будет заключать целое число недель; следовательно, весь ряд дальнейших лет будет начинаться тем же днем недели, и все даты из года в год будут повторяться в одни и те же дни. В годы високосные, заключающие 366 дней, надо будет уже первые два дня года оставить вне счета, «новогодние».
Любопытна и другая особенность числа 365, не связанная с календарем:
365 = 10 x 10 + 11 x 11 + 12 x 12,
то есть 365 равно сумме квадратов трех последовательных чисел, начиная с 10-ти:
102 + 112 + 122 = 100 + 121 + 144 = 365.
Но и это еще не все: тому же равна сумма квадратов двух следующих чисел - 13 и 14:
132 + 142 = 169 + 196 = 365.
Таких чисел не много наберется в нашей галлерее арифметических диковинок.
Три девятки
В следующей витрине выставлено наибольшее из всех трехзначных чисел: 999. Оно, без сомнения, гораздо удивительнее, чем его перевернутое изображение - 666, знаменитое «звериное число» Апокалипсиса, вселявшее нелепый страх многим суеверным людям, но по арифметическим свойствам ничем не выделяющееся среди прочих чисел. Любопытная особенность числа 999 проявляется при умножении на него всякого другого трехзначного числа. Тогда получается шестизначное произведение; первые три цифры его есть умножаемое число, только уменьшенное на 1-цу, а остальные три цифры (кроме последней) - «дополнения» первых до 9. Например:
Стуит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:
Зная эту особенность, мы можем «мгновенно» умножать любое трехзначное число на 999.
947 x 999 = 946053;
509 x 999 = 508491;
981 x 999 = 980019; и т. п.
А так как 999 = 9 x 111 = 3x3x3x37, то вы можете, опять-таки с молниеносной быстротой, писать целые колонны шестизначных чисел, кратных 37; незнакомый со свойствами числа 999, конечно, сделать этого не в состоянии. Короче говоря, вы можете устраивать перед непосвященными маленькие сеансы «мгновенного умножения и деления» не хуже иного фокусника.
Число шехеразады
Следующее на очереди у нас число 1001, - прославленное число Шехеразады. Вы, вероятно, и не подозревали, что в самом названии сборника волшебных арабских сказок заключается также своего рода чудо, которое могло бы поразить воображение сказочного султана не менее многих других чудес Востока, если бы он способен был интересоваться арифметическими диковинками.
Чем же так замечательно число 1001? С виду оно кажется весьма обыкновенным. Оно даже не принадлежит к избранному разряду так называемых «простых» чисел. Через ячейки Эратосфенова решета оно свободно проскользнуло бы, так как делится без остатка и на 7, и на 11, и на 13 - на три последовательных простых числа, произведением которых оно и является. Но в том, что число 1001 = 7x11x13, нет еще ничего волшебного. Замечательнее то, что при умножении на него трехзначного числа получается результат, состоящий из самого умноженного числа, только написанного дважды, например:
873 x 1001 = 873873;
207 x 1001 = 207207; и т. д.
И хотя этого и следовало ожидать, так как 873 x 1001 = 873 x 1000 + 873 = 873000 + 873, - все же, пользуясь указанным свойством «числа Шехеразады», можно достичь результатов совсем неожиданных, - по крайней мере, для человека неподготовленного.
Целое общество гостей, непосвященных в арифметические тайны, вы можете поразить следующим фокусом. Пусть кто-нибудь напишет на бумажке, секретно от вас, трехзначное число, какое хочет, и затем пусть припишет к нему еще раз то же самое число. Получится шестизначное число, составленное из трех повторяющихся цифр. Предложите тому же товарищу, или его соседу, разделить - секретно от вас - это число на 7; при этом вы заранее предсказываете, что остатка не получится. Результат деления передается соседу, который, по вашему предложению, делит его на 11; и хотя вы не знаете делимого, вы все же смело утверждаете, что и оно разделится без остатка. Полученный результат вы направляете следующему соседу, которого просите разделить это число на 13 - деление снова выполняется без остатка, о чем вы заранее предупреждаете. Результат третьего деления вы, не глядя на полученное число, вручаете первому товарищу со словами:
– Вот число, которое вы задумали!
Так и есть: вы угадали.
Какова разгадка этого фокуса?
Этот красивый арифметический фокус, производящий на непосвященных впечатление волшебства, объясняется очень просто: вспомните, что приписать к трехзначному числу его само - значит умножить его на 1001, т. е. на произведение 7x11x13. Шестизначное число, которое ваш товарищ получит после того, как припишет к задуманному числу его само, должно будет поэтому делиться без остатка и на 7, и на 11, и на 13; а в результате деления последовательно на эти три числа (т. е. на их произведение - 1001) оно должно, конечно, снова дать задуманное число.