Шрифт:
Число 10101
После сказанного о числе 1001 для вас уже не будет неожиданностью увидеть в витринах нашей галлереи число 10101. Вы догадаетесь, какому именно свойству обязано число это такою честью. Оно, как и число 1001, дает удивительный результат при умножении, - но не трехзначных чисел, а двузначных; каждое двузначное число, умноженное на 10101, дает в результате само себя, написанное трижды. Например:
73 x 10101 = 737373;
21 x 10101 = 212121.
Причина уясняется из следующей строки:
Можно ли проделывать с помощью этого числа фокусы необычайного отгадывания, как с помощью числа 1001?
Да, можно. Здесь даже возможно обставить фокус эффектнее, разнообразнее, если иметь в виду, что 10101 есть произведение четырех простых чисел:
10101 = 3x7x13x37.
Предложив первому гостю задумать какое-нибудь двузначное число, вы предлагаете второму приписать к нему то же число, а третьему приписать то же число еще раз. Четвертого гостя вы просите разделить получившееся шестизначное число, например, на 7; пятый гость должен разделить полученное частное на 3; шестой гость делит то, что получилось, на 37 и, наконец, седьмой делит этот результат на 13, - при чем все 4 деления выполняются без остатка. Результат последнего деления вы просите передать первому гостю: это и есть задуманное им число.
При повторении фокуса вы можете внести в него некоторое разнообразие, обращаясь каждый раз к новым делителям. А именно, вместо четырех множителей 3x7x13x37 можете взять следующие группы трех множителей: 21x13x37; 7x39x37; 3x91x37; 7x13x111.
Число это - 10101 - пожалуй, даже удивительнее волшебного числа Шехеразады, хотя и менее его известно своими поразительными свойствами. А между тем о нем писалось еще двести лет тому назад в «Арифметике» Магницкого, в той главе, где приводятся примеры умножения «с некоим удивлением». Тем с большим основанием должны мы включить его в наше собрание арифметических диковинок.
Число 10001
С этим числом вы также можете проделать фокусы вроде предыдущих, хотя, пожалуй, и не столь эффектные.
Дело в том, что оно представляет собою произведение только двух простых чисел:
10001 = 73 x 137.
Как воспользоваться этим для выполнения арифметических фокусов, читатель, надеюсь, после всего сказанного выше догадывается сам.
Шесть единиц
В соседней витрине мы видим такую диковинку арифметической кунсткамеры:
– число, состоящее из шести единиц. Благодаря знакомству с волшебными свойствами числа 1001, мы сразу соображаем, что
111111 = 111 x 1001.
Но 111 = 3x37, а 1001 = 7x11x13. Отсюда следует, что наш новый числовой феномен, состоящий из одних лишь единиц, представляет собою произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число 111111:
3 x (7 x 11 x 13 x 37) = 3 x 37037 = 111111
7 x (3 x 11 x 13 x 37) = 7 x 15873 = 111111
11 x (3 x 7 x 13 x 37) = 11 x 10101 = 111111
13 x (3 x 7 x 11 x 37) = 13 x 8547 = 111111
37 x (3 x 7 x 11 x 13) = 37 x 3003 = 111111
(3 x 7) x (11 x 13 x 37) = 21 x 5291 = 111111
(3 x 11) x (7 x 13 x 37) = 33 x 3367 = 111111 и т. д.
Вы можете, значит, засадить общество из 15 человек за работу умножения, и хотя каждый будет перемножать другую пару чисел, все получат один и тот же оригинальный результат: 111111.
То же число 111111 пригодно и для отгадывания задуманных чисел наподобие того, как выполняется это с помощью чисел 1001 и 10101. В данном случае нужно предлагать задумывать число однозначное, т. е. одну цифру, и повторять ее 6раз. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. д. Это дает возможность до крайности разнообразить выполнение фокуса. Как надо поступать в этих случаях, - предоставляю придумать читателю.