Шрифт:
Вплоть до 1900 г. свойства материи и наличие исключительного разнообразия форм ее проявления объясняли химическим взаимодействием примерно ста элементов, соответствующих различным атомам. Как свидетельствует огромное количество химических опытов, речь идет о феноменологическом описании, основанном на понятии валентности и вполне подходящем с точки зрения многих технических приложений.
Открытие электрона в конце прошлого столетия положило конец мифу о неделимости атома. Согласно модели Бора – Резерфорда, атом подобен миниатюрной солнечной системе, состоящей из положительно заряженного тяжелого ядра, вокруг которого вращаются электроны, заряженные отрицательно. в целом атом нейтрален.
Электромагнитные и ядерные силы
Таким образом, мы столкнулись с силой нового типа – электромагнитной силой. в нашем введении мы не будем рассказывать об историческом пути, приведшем в 1859 г. к открытию Дж.К. Максвеллом уравнений электромагнитного поля, открытию, стоящему в одном ряду с теорией Ньютона. Согласно теории Максвелла, материальное тело характеризуется еще одним свойством – электрическим зарядом. Зная его, мы знаем, как тело взаимодействует с электрическим и магнитным полями, а также как оно их создает. Противоположные заряды притягиваются, а заряды одинакового знака отталкиваются. Итак, существуют положительные и отрицательные заряды; в теории же Ньютона массы всегда положительны и всегда притягиваются.
Внутри вещества положительные заряды (ядра) стремятся к отрицательным (электроны), чтобы вместе создать нейтральное вещество (атомы); оставленное в покое вещество стремится «спрятать» электромагнитное поле. с другой стороны, большому количеству вещества, собранного вместе, свойственны большая масса и, следовательно, гравитационное притяжение. Поэтому, даже если электрическая сила взаимодействия электрона и ядра несравнимо больше сил тяготения, в конце концов начинают доминировать именно последние, когда в игру вступают большие количества вещества.
Атом Бора вмиг свел химию к одной из глав физики, а классификацию элементов – к классификации атомных ядер. в свою очередь оказалось, что ядра состоят из нуклонов, положительных (протонов) и нейтральных (нейтронов), с массой примерно в две тысячи раз большей массы электрона. Но, как сказал Фейнман, успех физической теории определяется не столько задачами, которые с ее помощью решаются, сколько значением новых задач, возникающих на ее основе.
Гравитоны, фотоны, и пионы
Одна из первых задач касалась природы сил, за счет которых нуклоны держатся вместе внутри ядра; вскоре оказалось, что они примерно в сто раз больше электрических и что на расстояниях в несколько ферми (1 ферми равен одной триллионной доле миллиметра) их действие прекращается. Другой вопрос касался самой природы электромагнитного поля. Выдающимся достижением Максвелла было осознание того, что световые волны наряду с радиоволнами, рентгеновским и -излучением представляют собой очень быстрые колебания электромагнитного поля; все они имеют одну и ту же природу и различаются только частотой.
Свет, падая на металлическую поверхность, может поглотиться и передать свою энергию электрону, который при этом вылетает из атома (фотоэлектрический эффект). в своей первой работе, опубликованной в 1905 г., Эйнштейн объяснил некоторые расхождения наблюдавшегося фотоэлектрического эффекта с теорией Максвелла. в сущности, Эйнштейн выдвинул гипотезу о существовании новой частицы – кванта света, или фотона, гипотезу, принявшую окончательный вид к концу 1923 г.
Энергия электромагнитной волны не может передаваться непрерывно, а выдается, согласно закону Планка, пакетами (квантами) определенной величины, пропорциональной частоте. Частота радиоволн столь низка, и соответствующие пакеты столь малы, что создается впечатление непрерывного излучения. в случае же -излучения фотон ведет себя как настоящая частица, как «атом света». Фотон имеет двойственную природу: он одновременно представляет собой и частицу, и волну. Даже гравитационные волны, предсказываемые общей теорией относительности, должны быть квантованы: им соответствует гравитон.
Итак, существовали частицы «нормальные», к которым относились электрон и протон, и «частицы-волны», как фотон и гравитон. из необходимости обойти эту неприятную асимметрию и родилась квантовая механика, постулирующая двойственную природу волна – частица всей материи. Электроны и протоны также представляют собой волны; их волновая природа проявляется только тогда, когда они находятся в ограниченной области пространства (как в атомах или ядрах) или в столкновениях со столь же мелкими препятствиями. Таким образом, стирается грань между материей (веществом) и светом, свет выступает как особая форма материи.
Исключительно сложная теория, называемая квантовой электродинамикой и развитая в послевоенные годы Фейнманом, Томонагой, Швингером и Дайсоном, дает очень точное описание сложного пространственно-временного пинг-понга, происходящего в мире, состоящем из электрических зарядов и фотонов. Заряды обмениваются фотонами; эти последние ответственны за электромагнитные силы взаимодействия самих зарядов. в сущности, отменяется ньютоновское мгновенное действие на расстоянии, фотоны выступают как «носители» силы или, если угодно, как электромагнитный «клей». Точно таким же образом гравитационным клеем служит гравитон. Ядерные силы можно представить как результат обмена л-мезонами, предсказанными Юкавой и названными пионами. Пионы образуют семейство из трех частиц (положительной, нейтральной и отрицательной), которые все рождаются в ядерных реакциях на наших ускорителях.