Шрифт:
Применение идей Бора при рассмотрении более сложных атомов позволило надежно обосновать периодическую систему Менделеева и выяснить природу химической связи. Столь же важным оказалось открытие того, что дуализм волна – частица универсален и присущ всякой материи. Несколько замечаний, высказанных Эйнштейном на эту тему, позволили Шредингеру вывести знаменитое уравнение, описывающее движение этих волн материи.
Остается вопросом истории, какие же причины привели Эйнштейна (да и Шредингера) в стан противников новой физики, поднявшейся из пепла старой, в частности, именно благодаря им. Разумеется, и до сих пор существуют сомнения относительно правильной интерпретации квантовой механики. Большинство физиков придерживается интерпретации так называемой Копенгагенской школы. Все, включая самого Эйнштейна, признали выводы и формулы, которые следуют из этой интерпретации. Тем не менее вплоть до своей смерти в 1955 г. Эйнштейн считал квантовую механику несовершенной теорией, неопределенность которой представляет собой серьезный недостаток, частично закрывающий от нас истину.
Одним из популярнейших персонажей комиксов 30-х годов, вне сомнения, был Брик Брадфорд (в итальянском варианте – Джорджо Вентура). в одном из своих наиболее известных похождений он, уменьшенный дьявольской машиной, внедряется в монету стоимостью один цент, чтобы подробно исследовать атом меди. Атом представлен в виде планетарной системы в миниатюре; вокруг Солнца вращаются планеты, населенные странными существами. Рассказик в картинках несомненно был навеян представлением об атоме Бора: вокруг ядра, исполняющего роль Солнца, вращаются электроны-планеты. на этом все сходство практически кончается. Ядро на самом деле не освещает систему (а если и освещает, то излучая -лучи), электроны в действительности все одинаковы и отталкиваются друг от друга при сближении; и что еще хуже, орбиты электронов практически заполняют весь атом, в то время как орбиты планет лежат в одной плоскости (называемой эклиптикой).
Представление о планетарной системе все же имеет несомненные заслуги в деле создания зрительных образов и популяризации чрезвычайно сложных понятий; временами бывает удобно воспользоваться несовершенными образами в качестве первого приближения, чтобы передать суть дела. с точки зрения дидактики открытие квантовой механики ухудшило положение, хотя и позволило нам глубже постичь некоторые странные свойства атомов.
Корпускулярная природа света
В своей первой работе 1905 г. Альберт Эйнштейн привлек корпускулярную теорию света для объяснения аномалий, наблюдавшихся в фотоэлектрическом эффекте: согласно этой теории, свет распространяется в виде пакетов («квантов» света, или «фотонов») вполне определенной энергии, пропорциональной частоте в соответствии с законом Планка.
В известном смысле лампа представляет собой «пулемет, стреляющий фотонами»; как мы уже говорили, энергия этих фотонов может меняться к зависит от цвета света; энергия синих квантов вдвое превышает энергию красных; кванты радиоволн исключительно маленькие, в то время как кванты -излучения громадны (на атомном уровне); в предельном случае космического излучения могли бы существовать кванты с энергией, сравнимой с энергией мяча для гольфа.
Наблюдение электронов
Предположим теперь, что нам захотелось увидеть движение электронов внутри атома так же, как с помощью телескопов мы наблюдаем движение планет. Поскольку ядро само не излучает и электроны не испускают собственного света, пришлось бы осветить атом извне, используя подходящий источник. Длина волны падающего света должна быть сравнимой с размерами наблюдаемых объектов; так, радар, работающий на метровых радиоволнах, не «увидит» мухи; по этой же причине обычный микроскоп не может помочь нам увидеть внутренность атома. Самый мелкий объект, наблюдаемый в обычном видимом свете, имеет размеры порядка тысячной доли миллиметра, а атом примерно в десять тысяч раз меньше; чтобы увидеть в атоме хоть что-нибудь, нужно освещать его рентгеновскими лучами. Кстати, первые успехи в понимании структуры атома были достигнуты как раз тогда, когда физики получили в свое распоряжение источник коротковолнового излучения. Частота увеличивается с уменьшением длины волны, длинные радиоволны (с длиной волны порядка 1 км) имеют низкую частоту (для указанной длины волны она составляет 300000 герц; 1 герц=1 цикл в секунду); частота волн видимого света доходит до 3·1014 герц, что в миллиард раз больше.
Соотношение неопределенности
Как уже было сказано, энергия фотонов света намного больше энергии квантов радиоволн; в свою очередь энергия квантов рентгеновских лучей в десять или даже в сто тысяч раз больше энергии квантов световых. Чем меньше детали объектов, которые мы собираемся рассматривать, тем энергичнее должны быть используемые фотоны. Этот факт имеет странные последствия. в то время как свет от Солнца, даже интенсивный, практически не воздействует на движение планет и позволяет нам спокойно вести наблюдения, излучение рентгеновских микроскопов очень сильно влияет на движение исследуемых электронов, бомбардируя их фотонами высоких энергий. Действительно, электроны представляют собой частицы с очень маленькой массой, и их движение испытывает сильное возмущение при соударении с фотонами, используемыми для наблюдения; ведь чтобы точно определить положение электрона, необходимо использовать коротковолновые и высокочастотные рентгеновские лучи, т.е. фотоны очень высоких энергий. в результате проведенного наблюдения скорость электрона окажется чрезвычайно неопределенной величины, поскольку невозможно заранее предвидеть, сколько энергии он получит от фотона-наблюдателя.
Подобные рассуждения привели к появлению соотношения неопределенности Гейзенберга: согласно Гейзенбергу, невозможно одновременно определить и положение, и скорость электрона (да и любой другой частицы). Более того, бессмысленно даже представлять электрон как объект, которому можно приписать положение и скорость, определенные совершенно точно в одно и то же время; ограничения, которых мы коснулись, связаны вовсе не с плохой конструкцией микроскопа, но следуют из новых свойств, внутренне присущих материи. Эти свойства явились предметом длительных дебатов, не затихающих до сих пор.
Волновая формулировка квантовой механики
Трудности, возникающие при попытках объяснить квантовую механику непосвященным, довольно значительны; вероятно, лучше всего можно разъяснить суть вещей, исходя из ее волновой формулировки.
Движение электрона при этом уже не описывают, задавая последовательные положения в зависимости от времени, – электрон представляется в виде «мини-волны»; при таком подходе соотношение неопределенности автоматически входит составной частью в теорию.
Вообразим серию волн, набегающих на пологий берег; скорость этих волн вполне определенная, и ее можно вычислить, зная расстояние и время, разделяющие два последовательных гребня. Волна, однако, не особенно локализована, она занимает большое пространство. Электрон, скорость которого нам хорошо известна, в отличие от положения, которое мы знаем очень плохо, можно представить в виде волны такого типа.
В противоположность рассмотренному примеру можно представить себе бак с водой, подвешенный над поверхностью моря в точно определенном месте; бак открывается, и вода в последующие мгновения низвергается, создавая серию волн, которые разбегаются во все стороны с самыми различными скоростями. Электрон, локализованный в пространстве, характеризуется волновой функцией как раз такого типа.