Вход/Регистрация
Астероидно-кометная опасность: вчера, сегодня, завтра
вернуться

Иванов Борис Федорович

Шрифт:

8.6.3. Массовые вымирания и вулканизм. По мнению многих ученых, массовые вымирания видов (по крайней мере, некоторые из них) связаны с ударами космических тел. В качестве альтернативной причины рассматриваются сверхмощные вулканические извержения — супервулканизм. Известно, что 74 000 лет назад на северной Суматре возникла кальдера размером ~ 100 км, а масса вулканической пыли, выброшенной при извержении в стратосферу, была настолько велика, что температура воздуха, возможно, понизилась на несколько градусов. Еще более мощные извержения происходили, вероятно, на территории, занимаемой ныне Йеллоустоунским национальным парком в штате Вайоминг, США (3 извержения произошли 2,1 млн лет, 1,3 млн лет и 0,64 млн лет назад). Детали воздействия таких извержений на климат пока недостаточно ясны. Самым мощным извержением за последние 200 лет было извержение вулкана Тамбора в 1815 г. На одной из стадий извержения высота эруптивной колонки достигла 40–50 км, т. е. произошел прорыв тропопаузы, и выброшенные мелкие частицы пепла долго оседали, изменяя прозрачность атмосферы. Это извержение известно как вызвавшее «год без лета». Отметим, что катастрофические последствия были намного меньше, чем после упомянутых извержений на Суматре и тем более в Йеллоу-стоунском парке. Полный объем выброса составил~ 100 км3. Последствия извержения в основном носили локальный и региональный характер. Глобальные изменения температуры были невелики — десятые доли градуса, как и при других мощных извержениях последних столетий — вулканы Кракатау (1883) и Агунг (1963) с выбросами 20 км3 и 1 км3 соответственно [Rampino and Self, 1982]. Совместное действие мощных вулканических извержений и ударов космических тел еще предстоит выяснить.

В настоящее время и ударные, и вулканические явления рассматриваются как наиболее вероятные возможные причины массовых вымираний.

Глава 9

Частота столкновений малых тел с Землей и оценки рисков

Можно считать курьезом, что научное сообщество ревностно изучает далекие галактики и в то же время игнорирует любую возможность серьезного столкновения Земли с космическими объектами. Для меня это типичный пример амнезии.

Ф. Хойл

9.1. Статистика метеоритных кратеров на небесных телах

Сталкиваясь с планетными телами, малые тела образуют ударные кратеры, популяция которых создает как бы отпечаток популяции малых тел Солнечной системы. Распределение по размерам ударных кратеров на планетных телах с твердой поверхностью является одной из наиболее легко измеряемых (и весьма сложной в интерпретации) характеристик эволюции Солнечной системы. С точки зрения проблемы астероидно-кометной опасности, наблюдаемая частота встречаемости ударных кратеров различного размера является необходимым дополнением к астрономическим наблюдениям малых тел, которые могут столкнуться с Землей.

При известных скоростях столкновения с различными планетными телами (т. е. планетами, их спутниками и другими малыми телами) и знании законов подобия, связывающих размеры ударных кратеров и параметры тел (ударников), их образующих, данные по частоте встречаемости кратеров и ударников могут быть взаимно дополнены. Процедура такого сравнения была разработана в 1960-х гг., и с тех пор постоянно совершенствуется [Hartmann et al., 1981]. Ниже излагаются основные данные о частоте встречаемости кратеров, а также подходы к их интерпретации.

Лунные кратеры. Измерения распределения по размерам лунных кратеров было начато еще по телескопическим наблюдениям и фотографиям ["Opik, 1960]. Уже тогда была выявлена главная черта распределения кратеров по размерам — их число N убывает с ростом диаметра кратера D примерно как степенная функция диаметра. Поскольку статистика кратеров, как и многих других объектов, может быть представлена в различных формах, необходимо привести главные из них. Простейшим способом является кумулятивный подсчет числа кратеров N(> D) с размером, больше данного диаметра D.

Тогда типичное распределение ударных кратеров по размерам можно представить в виде

где S — площадь, на которой измерено количество кратеров, b — показатель степенного закона (обычно в диапазоне от 1,5 до 4), A — коэффициент пропорциональности. Кумулятивная форма представления удобна своей простотой, но зачастую приводит к недоразумениям, когда реальный закон распределения отклоняется от простой степенной зависимости.

Инкрементальный способ представления статистики кратеров состоит в подсчете числа кратеров N(Dav), размеры которых заключены в заданном диапазоне размеров D = D2 x D1 при среднем размере, определяемом как среднее арифметическое Dav = (D1 + D2)/2 или среднее геометрическое Dav = (D1 x D2)1/2. Такая статистика описывается выражением

где показатель степенной функции по модулю на единицу больше, чем в кумулятивном законе. Строго говоря, коэффициент пропорциональности B должен быть величиной отрицательной (число кратеров убывает с ростом их размера), однако для практических нужд его практически всегда используют как положительную величину.

После накопления большого опыта в практическом подсчете статистики лунных и марсианских кратеров специально созданная рабочая группа НАСА опубликовала практические рекомендации по стандартизации представления статистики кратеров в инкрементальном виде [Arvidson et al., 1979]. Было рекомендовано, как правило, использовать для инкрементального представления данных не равные интервалы диаметров, а логарифмически равные интервалы, когда отношение D2/D1 является величиной постоянной и равной в стандартном случае по умолчанию 2. В случае постоянства отношения D2/D1 показатель степени в инкрементальном законе будет таким же, как и в кумулятивном законе. Поскольку главным сторонником подобного представления был известный американский исследователь У. Хартманн (W. K. Hartmann), мы будем обозначать число кратеров в интервалах с постоянным D2/D1 = 2 как NH:

(заметим, что сам Хартманн иногда использовал не средний диаметр Dav, а меньший диаметр интервала измерений D1; интересующийся читатель должен быть настороже).

Для представления инкрементальных данных рекомендуется использовать линейку граничных диаметров интервалов, один из которых фиксирован при D = 1 км. Тогда интервалы диаметров в сторону больших размеров составляют 1,41, 2, 2,83, 4 км и т. д., а в сторону меньших размеров — 707, 500, 353, 250 м и т. д., при стандартном отношении D2/D1 = 2.

  • Читать дальше
  • 1
  • ...
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: