Вход/Регистрация
Новый ум короля: О компьютерах, мышлении и законах физики
вернуться

Пенроуз Роджер

Шрифт:

Таким же образом, меняя направление времени, мы приходим к выводу о неизбежности соответствующей начальнойпространственно-временной сингулярности, которую мы теперь представляем как Большой взрыв, в любой (надлежащим образом) расширяющейся вселенной. Только теперь, вместо окончательного разрушенияпространства-времени и материи, эта сингулярность представляет собой рождениепространства-времени и материи. Может показаться, что имеется полная временная симметрия между этими двумя типами сингулярностей: начальнымтипом, при котором пространство-время и материя рождаются, и конечнымтипом, когда пространство-время и материя уничтожаются. Конечно, между этими двумя ситуациями действительно имеется важная аналогия, но исследуя их более детально, мы обнаружим, что они не являются точнымикопиями, обращенными во времени относительно друг друга. И для нас важно разобраться в тех различиях геометрического характера, которые имеются между ними, поскольку именно они оказываются ключевыми в понимании источника второго начала термодинамики!

Обратимся к наблюдениям нашего астронавта В, который отважился на самопожертвование ради науки. Он наблюдает приливные силы, которые очень быстро возрастают до бесконечности. Поскольку он путешествует в пустом пространстве, то он ощущает деформирующиеэффекты, которые оставляют величины объемов неизменными и которые создаются частью тензора пространственно-временной кривизны, обозначенной мною как ВЕЙЛЬ(см. главу 5, «Общая теория относительности Эйнштейна»). Другая часть тензора пространственно-временной кривизны, отвечающая за общее изменение объемов и называемая РИЧЧИ, обращается в нуль в пустом пространстве. Может оказаться, что Ввсе же встретится с какой-нибудь материей в некоторый момент, но даже если это действительно произойдет (ведь, в конце концов, и сам астронавт состоит из материальных частиц), мы, вообще говоря, все равно обнаружим, что величина ВЕЙЛЬбудет намного превосходитьвеличину РИЧЧИ. Таким образом, значение кривизны вблизи конечнойсингулярности полностью определяется поведением тензора ВЕЙЛЬ. Этот тензор, вообще говоря, стремится к бесконечности:

ВЕЙЛЬ– >

(хотя это стремление может иметь осциллирующий характер). Эта ситуация оказывается типичнойдля пространственно-временной сингулярности [185] . Такое поведение связано с высокоэнтропийнойсингулярностью.

Однако в случае Большого взрыва, ситуация оказывается совершенно другой. Стандартная модель Большого взрыва выводится из рассмотренных нами ранее вселенных Фридмана-Робертсона-Уокера, обладающих высокой степенью симметрии. Здесь деформирующее приливное воздействие, связанное с тензором ВЕЙЛЬ, вообще отсутствует. Вместо него теперь имеется направленное внутрь симметричное ускорение, действующее на любую сферическую поверхность, состоящую из пробных частиц (см. рис. 5.26). Но это — результат воздействия тензора РИЧЧИ, а не тензора ВЕЙЛЬ. В любой ФРУ– моделивсегда имеет место тензорное уравнение:

185

Смотри изложение этого вопроса в работах Белинского, Халатникова и Лифшица [1970] и Пенроуза [1979].

ВЕЙЛЬ= 0 .

По мере того, как мы приближаемся к начальной сингулярности все ближе и ближе, мы обнаруживаем, что именно РИЧЧИ, а не ВЕЙЛЬ, становится бесконечным и, таким образом, именно РИЧЧИ, а не ВЕЙЛЬ, определяет начальную сингулярность. Значит, мы имеем дело с низкоэнтропийнойсингулярностью.

Если мы исследуем сингулярность схлопывания в точнойколлапсирующей ФРУ– модели, мы и здесь обнаружим, что в момент схлопывания ВЕЙЛЬ= 0 , тогда как РИЧЧИстремится к бесконечности. Однако, эта особая ситуация дает нам совсем не то , что мы ожидаем от более реалистичной модели, в которой учитывается также и гравитационная конденсация. С течением времени вещество, находящееся первоначально в виде рассеянного газа, будет конденсироваться в звездные галактики. В этом процессе большое число звезд испытают гравитационное сжатие и превратятся в белые карлики, нейтронные звезды и черные дыры, а также в гигантские черные дыры, которые вполне могут образоваться в центрах галактик. Такого рода конденсация — особенно в случае черных дыр — связана с огромным возрастанием энтропии (рис. 7.16).

Рис. 7.16.Для обычного газа повышение энтропии связано с увеличением степени однородности его распределения внутри ящика. Для гравитирующих систем имеет место обратная ситуация. Высокая энтропия соответствует гравитационному конденсату, а максимальная — образованию черной дыры

Может показаться странным, на первый взгляд, что конденсированные состояния дают большуюэнтропию, чем состояния с однородным распределением, особенно если вспомнить, что для газа в ящике его конденсированные состояния (например, случай, когда весь газ собирается в одном из углов ящика) имели низкуюэнтропию, в то время как однородноераспределение, соответствующее тепловому равновесию — имело высокую энтропию. При учете гравитации ситуация меняется на обратнуюблагодаря универсальности гравитационного притяжения. С течением времени, конденсация становится все более и более сильной и, в конце концов, множество сконденсировавшихся черных дыр соединяет свои сингулярности в финальной сингулярности большого коллапса. Такая конечная сингулярность не имеет ничего общего с тем идеализированным большим коллапсом, который имеет место в коллапсирующей ФРУ– модели, где действовало ограничение ВЕЙЛЬ= 0 . По мере накопления числа сконденсировавшихся объектов, тензор ВЕЙЛЬимеет тенденцию непрерывно увеличиваться [186] и, вообще говоря, ВЕЙЛЬ– > в конечной сингулярности. Посмотрите на рис. 7.17, где показана полная история замкнутой вселенной в соответствии с этой общей картиной.

186

Возникает искушение отождествить гравитационный вклад в энтропию системы с некоторой мерой вейлевской кривизны, но до сих пор ни одной подходящей меры не найдено. (Искомая мера, вообще говоря, должна была бы обладать нелокальными свойствами.) К счастью, в наших рассуждениях мы можем обойтись и без нее.

Рис, 7.17.Полная история замкнутой вселенной, которая начинается с однородного низкоэнтропийного большого взрыва с ограничением ВЕЙЛЬ= 0 и заканчивается высокоэнтропийным большим коллапсом — представляющим собой сгущение большого числа черных дыр — с условием ВЕЙЛЬ– >

Мы видим теперь, как становится возможной ситуация, когда сжимающаяся вселенная может не обладать низкой энтропией. Та «малость» энтропии Большого взрыва, которая обеспечивает нам выполнение второго начала, не была, таким образом, следствием одной только«малости» вселенной в момент взрыва! Если бы мы обратили во времени картину большого коллапса, к которой только что пришли, мы бы получили «большой взрыв» с чрезвычайно высокойэнтропией, где не было бы второго начала! По некоторым причинам, вселенная возникла в особом (низкоэнтропийном) состоянии, на которое было наложено условие типа ВЕЙЛЬ= 0 для ФРУ– моделей. И если бы подобного рода ограничение не имело места, то «намного более вероятной» могла бы оказаться ситуация, в которой как начальная, так и конечная сингулярности были бы высокоэнтропийного типа ВЕЙЛЬ– > (рис. 7.18).

Рис. 7.18.Если убрать ограничение ВЕЙЛЬ= 0 , то большой взрыв получится тоже высокоэнтропийным, с условием ВЕЙЛЬ– > . Такая вселенная была бы сплошь испещрена белыми дырами и в ней не выполнялось бы второе начало термодинамики — в полном противоречии с нашим опытом

В такой гипотетической вселенной, конечно же, не нашлось бы места для второго начала термодинамики!

Насколько особым был Большой взрыв?

Попробуем разобраться с вопросом о том, насколько ограничивающим для Большого взрыва было условие типа ВЕЙЛЬ= 0 . Для простоты (как и ранее) мы будем считать вселенную замкнутой. Для того чтобы составить ясную и конкретную картину, далее мы везде будем полагать, что число барионов В — т. е. общее число протонов и нейтронов, во вселенной составляет примерно

  • Читать дальше
  • 1
  • ...
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: