Вход/Регистрация
Новый ум короля: О компьютерах, мышлении и законах физики
вернуться

Пенроуз Роджер

Шрифт:

p + q = 1 .

Если же существуют и другие возможности, то эта сумма должна быть меньше 1 . В этом случае выражение р: q дает отношениевероятности события А к вероятности события В . А сами вероятности событий А и В (при условии, что имеются только эти две альтернативы) были бы равна, соответственно, p /( p + q ) и q /( p + q ) — Мы можем использовать такую интерпретацию и в том случае, когда сумма р + q больше 1 . (Такой способ вычисления вероятностей мог бы быть полезным, например, если бы мы многократно повторяли эксперимент, а р было бы количеством событий A , a q — количеством событий В ). Мы будем говорить, что числа р и q нормированы, если р + q = 1 , в этом случае они дают сами вероятности, а не только отношения вероятностей.

Подобнымобразом мы поступаем и в квантовой физике, с тем лишь исключением, что в квантовой физике р и q — комплексныечисла, в силу чего я предпочитаю их обозначить и z , соответственно:

х альтернатива А + z х альтернатива В .

Как же теперь нам истолковать и z ? Несомненно, что они не являются обычными вероятностями (или отношениями вероятностей), так как каждое из чисел и z может по отдельности быть отрицательным или комплексным. Но во многих отношениях они ведут себя подобно вероятностям. Числа той z (при соответствующей нормировке — см. далее) принято называть амплитудами вероятности, или просто амплитудами. Более того, часто используют терминологию, которая наводит на мысль о вероятностях, например: «Существует амплитуда того, что произойдет событие А , и амплитуда z того, что произойдет событие В». Амплитуды еще не вероятности, но на миг попытаемся сделать вид, будто они являются вероятностями или, точнее, аналогами вероятностей на квантовом уровне.

Как проявляются обычныевероятности? Полезно представить себе какой-нибудь макроскопический объект, например, шарик, прошедший сквозь одну из двух щелей к стоящему позади экрану (как в описанном выше эксперименте с двумя щелями (см. рис. 6.3), но вместо прежнего фотона теперь фигурирует классический макроскопический шарик). Должна существовать некоторая вероятность P ( s , t ) того, что отправившись из точки s шарик достигнет верхнего отверстия t , и некоторая вероятность P ( s , t ) того, что шарик достигнет нижнего отверстия b . Кроме того, если мы выберем некоторую точку р на экране, то должна существовать некоторая вероятность P ( t , р ) того, что шарик достигнет точки р на экране, пройдя через t , и некоторая вероятность Р ( b , р ) того, что он что шарик достигнет точки р , пройдя через b . Если открыто только отверстие t , то для того, чтобы найти вероятность того, что шарик действительно достигает точки р , пройдя через отверстие t , мы умножаем вероятность того, что он попадает из точки s в t , на вероятность того, что он попадает из t в точку р :

P ( s , t ) х P ( t , p ).

Аналогично, если открыто только нижнее отверстие, то вероятность того, что шарик попадает из s в р , равна

P ( s , b) х Р ( b , р ).

Если открыты оба отверстия, то вероятность того, что шарик попадает из s в точку р через t , по-прежнему равна первому произведению P( s , t ) х P ( t , р ) (так, как если бы было открыто только отверстие t ), и вероятность того, что шарик попадает из точки s в точку р через b , по-прежнему равна P ( s , b ) х Р ( b , р ). Поэтому полная вероятность P ( s , р ) того, что шарик, побывав в точке р , попадет в точку s , равна сумме двух приведенных выше вероятностей:

P ( s , р ) = P ( s , t ) х P ( t , р ) + P ( s , b ) x P ( b , p ).

На квантовомуровне эти правила остаются в точности такими же, с тем лишь исключением, что теперь роль вероятностей, с которыми мы имели дело в классическом случае, должны играть эти странные комплексные амплитуды. Например, в рассмотренном выше эксперименте с двумя щелями мы имеем амплитуду A ( s , t ) того, что фотон достигнет верхней щели t из источника s , и амплитуду A ( t , р ) того, что фотон достигнет точки р на экране из щели t , и, перемножив эти амплитуды, мы получим амплитуду

  • Читать дальше
  • 1
  • ...
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: