Шрифт:
4. Как повлияет алгоритм Нагла (см. раздел 7.10) на нашего клиента из листинга 10.7? Не лучше ли будет отключить алгоритм Нагла для этой программы? Воплотите это изменение в код клиента и сервера.
5. В разделе 10.6 мы утверждали, что приложению следует изменять количество потоков до установки ассоциации. Что произойдет в противном случае?
6. Когда мы говорили о количестве потоков, мы подчеркнули, что только для сокетов типа «один-ко-многим» можно увеличить количество потоков при помощи вспомогательных данных. Почему это так? (Подсказка: вспомогательные данные необходимо передавать с сообщениями.)
7. Почему сервер может не отслеживать открытые ассоциации? Опасно ли это?
8. В разделе 10.7 мы изменили сервер так, что он стал закрывать ассоциацию после отправки каждого сообщения. Вызовет ли это какие-либо проблемы? Хорошее ли это решение с точки зрения архитектуры приложения?
Глава 11
Преобразования имен и адресов
11.1. Введение
Во всех предшествующих примерах мы использовали численные адреса узлов (например, 206.6.226.33) и численные номера портов для идентификации серверов (например, порт 13 для стандартного сервера времени и даты и порт 9877 для нашего эхо-сервера). Однако по ряду соображений предпочтительнее использовать имена вместо чисел: во-первых, имена проще запоминаются, во-вторых, если численный адрес поменяется, имя можно сохранить, и в-третьих, с переходом на IPv6 численные адреса становятся значительно длиннее, что увеличивает вероятность ошибки при вводе адреса вручную. В этой главе описываются функции, выполняющие преобразование имен и адресов:
11.2. Система доменных имен
Система доменных имен( Domain Name System, DNS) используется прежде всего для сопоставления имен узлов и IP-адресов. Имя узла может быть либо простым(simple name), таким как
В техническом отношении FQDN может также называться абсолютным именем и должно оканчиваться точкой, но пользователи часто игнорируют точку в конце. Точка сообщает распознавателю о том, что имя является абсолютным и не требует проведения поиска но различным доменам верхних уровней.
В этом разделе мы рассмотрим только основы DNS, необходимые нам для сетевого программирования. Читатели, интересующиеся более подробным изложением вопроса, могут обратиться к главе 14 [111] и к [1]. Дополнения, требуемые для IPv6, изложены в RFC 1886 [121].
Записи ресурсов
Записи в DNS называются записями ресурсов( resource records, RR). Нас интересуют только несколько типов RR.
А. Запись типа А преобразует имя узла в 32-разрядный адрес IPv4. Вот, например, четыре записи DNS для узла
AAAA. Запись типа AAAA, называемая «четыре А» (quad А), преобразует имя узла в 128-разрядный адрес IPv6. Название «четыре А» объясняется тем, что 128-разрядный адрес в четыре раза больше 32-разрядного адреса.
PTR. Запись PTR (pointer records — запись указателя) преобразует IP-адрес в имя узла. Четыре байта адреса IPv4 располагаются в обратном порядке. Каждый байт преобразуется в десятичное значение ASCII (0-255), а затем добавляется
32 полубайта 128-разрядного адреса IPv6 также располагаются в обратном порядке. Каждый полубайт преобразуется в соответствующее шестнадцатеричное значение ASCII (
Например, две записи PTR для нашего узла
MX. Запись типа MX (Mail Exchange Record) определяет, что узел выступает в роли «маршрутизирующего почтового сервера» для заданного узла. В приведенном выше примере для узла
Мы не используем в примерах книги записей типа MX, но упоминаем о них, потому что они широко используются в реальной жизни.
CNAME. Аббревиатура CNAME означает «каноническое имя» (canonical name). Обычно такие записи используются для присвоения имен распространенным службам, таким как