Шрифт:
Глава 20
Широковещательная передача
20.1. Введение
В этой главе мы расскажем о широковещательной передаче( brodacasting), а в следующей главе — о многоадресной передаче( multicasting). Во всех предыдущих примерах рассматривалась направленная( одноадресная) передача( unicasting), когда процесс общается только с одним определенным процессом. Действительно, TCP работает только с адресами направленной передачи, хотя UDP и символьные сокеты поддерживают и другие парадигмы передачи. В табл. 20.1 представлено сравнение различных видов адресации.
Таблица 20.1. Различные формы адресации
Тип | IPv4 | Ipv6 | TCP | UDP | Количество идентифицируемых интерфейсов | Количество интерфейсов, куда доставляется сообщение |
---|---|---|---|---|---|---|
Направленная передача | • | • | • | • | Один | Один |
Передача наиболее подходящему узлу | • | Пока нет | • | Набор | Один из набора | |
Многоадресная передача | Не обязательно | • | • | Набор | Все в наборе | |
Широковещательная передача | • | • | Все | Все |
С введением IPv6 к парадигмам адресации добавилась передача наиболее подходящему узлу( anycasting). Ее вариант для IPv4 не получил широкого распространения. Он описан в RFC 1546 [88]. Передача наиболее подходящему узлу для IPv6 определяется в документе RFC 3513 [44]. Этот режим позволяет обращаться к одной (обычно «ближайшей» в некоторой метрике) из множества систем, предоставляющих одинаковые сервисы. Правильная конфигурация системы маршрутизации позволяет узлам пользоваться сервисами передачи наиболее подходящему узлу по IPv4 и IPv6 путем добавления одного и того же адреса в протокол маршрутизации в нескольких местах. Однако RFC 3513 разрешает иметь адреса такого типа только маршрутизаторам; узлы не имеют права предоставлять сервисы передачи наиболее подходящему узлу. На момент написания этой книги интерфейс API для использования адресов передачи наиболее подходящему узлу еще не определен. Архитектура IPv6 в настоящий момент находится на стадии совершенствования, и в будущем узлы, вероятно, получат возможность динамически предоставлять сервисы передачи наиболее подходящему узлу.
Вот наиболее важные положения из табл. 20.1:
Поддержка многоадресной передачи не обязательна для IPv4, но обязательна для IPv6.
Поддержка широковещательной передачи не обеспечивается в IPv6: любое приложение IPv4, использующее широковещательную передачу, для совместимости с IPv6 должно быть преобразовано так, чтобы использовать вместо широковещательной передачи многоадресную.
Широковещательная и многоадресная передачи требуют наличия протокола UDP или символьного IP и не работают с TCP.
Одним из применений широковещательной передачи является поиск сервера в локальной подсети, когда известно, что сервер находится в этой локальной подсети, но его IP-адрес для направленной передачи неизвестен. Иногда эту процедуру называют обнаружением ресурса( resource discovery). Другое применение — минимизация сетевого трафика в локальной сети, когда несколько клиентов взаимодействуют с одним сервером. Можно привести множество примеров интернет-приложений, использующих для этой цели широковещательную передачу. Некоторые из них используют и многоадресную передачу.
Протокол разрешения адресов (Address Resolution Protocol, ARP). Это фундаментальная часть IPv4, а не пользовательское приложение. ARP отправляет широковещательный запрос в локальную подсеть, суть которого такова: «Система с IP-адресом a.b.c.d, идентифицируйте себя и сообщите свой аппаратный адрес».
Протокол начальной загрузки (Bootstrap Protocol, BOOTP). Клиент предполагает, что сервер находится в локальной подсети, и посылает запрос на широковещательный адрес (часто 255.255.255.255, поскольку клиент еще не знает IP-адреса, маски подсети и адреса ограниченной широковещательной передачи в этой подсети).
Протокол синхронизации времени (Network Time Protocol, NTP). В обычном сценарии клиент NTP конфигурируется с IP-адресом одного или более серверов, которые будут использоваться для определения времени, и опрашивает серверы с определенной частотой (с периодом 64 с или больше). Клиент обновляет свои часы, используя сложные алгоритмы, основанные на значении истинного времени (time-of-day), возвращаемом серверами, и величине периода RTT обращения к серверам. Но в широковещательной локальной сети вместо того, чтобы каждый клиент обращался к одному серверу, сервер может отправлять текущее значение времени с помощью широковещательных сообщений каждые 64 с для всех клиентов в локальной подсети, ограничивая тем самым сетевой трафик.
Демоны маршрутизации. Наиболее часто используемый демон маршрутизации