Шрифт:
Если мы запустим программу, задав широковещательный адрес подсети 192. 168.42.255, мы увидим следующее:
Каждый раз мы набираем строку ввода, чтобы сгенерировать выходную дейтаграмму UDP, и каждый раз получаем три ответа, причем отвечает и отправляющий узел. Как мы отмечали ранее, получателями широковещательной дейтаграммы являются все узлы в сети, включая отправляющий. Каждый ответ является направленным, поскольку адрес отправителя запроса, используемый каждым сервером в качестве адреса получателя ответа, — это адрес направленной передачи.
Все системы сообщают одно и то же время, поскольку на них используется NTP (Network Time Protocol — протокол синхронизации времени).
Фрагментация IP-пакетов и широковещательная передача
В Беркли-ядрах фрагментация широковещательных дейтаграмм запрещена. Если размер IP-дейтаграммы, посылаемой на широковещательный адрес, превышает размер MTU исходящего интерфейса, возвращается ошибка
Можно наблюдать этот сценарий с нашей программой из листинга 20.1. Мы перенаправляем стандартный поток ввода для чтения из файла, содержащего 2000-байтовую строку, которая потребует фрагментации в Ethernet:
Это ограничение реализовано в AIX, FreeBSD и MacOS. Linux, Solaris и HP-UX фрагментируют дейтаграммы, отправленные на широковещательный адрес. Однако в целях переносимости приложение, которому нужно сделать широковещательный запрос, должно определять MTU для интерфейса, через который будет отправлено сообщение, при помощи параметра SIOCGIPMTU функции ioctl, после чего вычесть размер заголовков IP и транспортного протокола. Альтернативный подход: выбрать типичное значение MTU (например, 1500 для Ethernet) и использовать его в качестве константы.
20.5. Ситуация гонок
Ситуация гонок( race condition) обычно возникает, когда множество процессов получают доступ к общим для них данным, но корректность результата зависит от порядка выполнения процессов. Поскольку порядок выполнения процессов в типичных системах Unix зависит от множества факторов, которые могут меняться от запуска к запуску, иногда результат корректен, а иногда — нет. Наиболее сложным для отладки типом гонок является такой, когда результат получается некорректным только изредка. Более подробно о ситуациях гонок мы поговорим в главе 26, когда будем обсуждать взаимные исключения (mutex) и условные переменные (condition variables). При программировании потоков всегда возникают проблемы с ситуациями гонок, поскольку значительное количество данных является общим для всех потоков (например, все глобальные переменные).
Ситуации гонок другого типа часто возникают при работе с сигналами. Проблемы возникают, потому что сигнал, как правило, может быть доставлен в любой момент во время выполнения нашей программы. POSIX позволяет нам блокироватьдоставку сигнала, но при выполнении операций ввода-вывода это часто не дает эффекта.
Чтобы понять эту проблему, рассмотрим пример. Ситуация гонок возникает при выполнении программы из листинга 20.1. Потратьте несколько минут и посмотрите, сможете ли вы ее обнаружить. ( Подсказка: в каком месте программы мы можем находиться, когда доставляется сигнал?) Вы можете также инициировать ситуацию гонок следующим образом: изменить аргумент функции
Когда мы после внесения этих изменений наберем первую строку ввода, эта строка будет отправлена как широковещательное сообщение, а мы установим аргумент функции
Теперь мы проанализируем четыре различных варианта решения этой проблемы: одно некорректное и три различных корректных решения.
Наше первое (некорректное) решение снижает вероятность появления ошибки, блокируя сигнал и предотвращая его доставку, пока наша программа выполняет оставшуюся часть цикла
Листинг 20.2. Блокирование сигналов при выполнении в цикле for (некорректное решение)