Шрифт:
В блочной Вселенной пространство и время едины. Это можно изобразить в виде пространства-времени, в котором к трем измерениям пространства добавляется четвертое измерение – для времени (рис. 10). Событие, происходящее в определенный момент времени, характеризуется как точка в пространстве-времени, а история частицы в пространстве-времени представляется кривой, называемой мировой линией. Таким образом, время категоризируется геометрией, и мы говорим, что время стало пространственным или геометрическим. Физические законы также представлены геометрически, например мировые линии свободных частиц являются прямыми линиями в пространстве-времени. Линия фотона имеет наклон 45° (что соответствует измерению пространства в единицах времени, как мы обычно делаем, когда говорим о световых годах). Любая обычная частица должна перемещаться медленнее, чем фотон, следовательно, ее мировая линия будет располагаться под более крутым углом.
В – будущее относительно А.
С – прошлое относительно А.
D причинно не связано с А.
Рис. 10. Пространственно-временная картина блочной Вселенной. Пространство-время с одним пространственным измерением и одним временным измерением. Мы выбрали единицы измерения времени и пространства так, чтобы лучи света располагались под углом 45°. Причинно-следственная структура тогда определяется геометрически. Два события могут быть причинно-связанными, если они лежат на линии под углом 45° или круче. Мы видим мировую линию частицы, идущую от прошлого к будущему через событие А. Показаны также два луча света, проходящие через точку А. Заштрихованная область содержит события, которые причинно не связаны с А.
Это элегантное геометрическое представление СТО предложил в 1909 году Герман Минковский, один из преподавателей, обучавших Эйнштейна математике. В нем каждый физический факт движения представляется в виде теоремы о геометрии пространства-времени. То, что мы называем пространством Минковского, стало решающим шагом к ликвидации понятия времени, потому что убедительно доказывало: любое движение во времени может быть переведено на язык теоремы о вневременной геометрии. По словам Германа Вейля, одного из крупнейших математиков XX века, “в объективном мире просто ничего не происходит. Лишь в моем сознании… мир оживает как мимолетный образ пространства, которое постоянно меняется во времени” [38] .
38
Weyl, Hermann Philosophy of Mathematics and Natural Science. Princeton, NJ: Princeton University Press, 1949.
Чтобы проиллюстрировать мощь блочной картины, можно привести следующий философский довод в ее пользу. Он зависит лишь от относительности одновременности. Давайте для начала согласимся с тем, что настоящее реально. Мы не можем быть уверены, что будущее или прошлое также реальны (смысл как раз в том, чтобы выяснить, насколько они реальны), но мы не сомневаемся, что настоящее реально. Оно складывается из множества событий, ни одно из которых не реальнее остальных. Мы не знаем, являются ли два события в будущем реальными, но согласимся с тем, что если два события происходят в одно и то же время, они реальны в равной степени, независимо от того, происходят ли они в настоящем, прошлом или в будущем.
Если мы операционалисты, то должны говорить лишь о том, что видят наблюдатели. Поэтому мы утверждаем, что два события одинаково реальны, если они, по мнению некоторых наблюдателей, происходят одновременно. Мы также будем предполагать, что быть в равной степени реальным является транзитивным свойством. То есть если A и B, B и C в равной степени реальны, то A и C в равной степени реальны. Этот довод опирается на факт, что в СТО настоящее время зависит от наблюдателя. Выберите любые два события в истории Вселенной, одно из которых (А) является причиной второго (В). Всегда существует событие X, которое обладает следующим свойством. Предположим, наблюдатель Мария видит, что события А и Х происходят одновременно. Второй наблюдатель, Фредди, видит X одновременно с B (рис. 11).
Чтобы понять, почему событие X должно существовать, необходимо знать не только то, что одновременность относительна, но и что она относительна настолько, насколько это возможно. Одно из следствий постулатов Эйнштейна заключается в том, что если два события с точки зрения некоторых наблюдателей происходят одновременно, для всех остальных эти два события не являются причинно-связанными. Верно и обратное: если два события не связаны причиной, найдется наблюдатель, который видит их как синхронные. Таким образом, относительная одновременность является относительной настолько, насколько это возможно, но при условии сохранения причинно-следственных связей.
Если B – далекое будущее относительно А, то X должно быть достаточно далеко и от А, и от B, так что световой сигнал не успел бы пройти расстояние от X до А либо от X до B. Это не является проблемой, так как Вселенная, описанная Минковским, бесконечна [39] .
Мы может рассуждать так. Согласно принятому нами критерию, событие А столь же реально, как X. Но В столь же реально, как X. Поэтому A и B одинаково реальны. А и B – любые причинно-связанные события в истории Вселенной. Так, если в каком-то смысле одно событие во Вселенной реально, эта реальность справедлива и для всех остальных событий. Поэтому нет разницы между настоящим, прошлым и будущим. Реальность – это совокупность всех событий во Вселенной, взятых одномоментно вместе. Нет никакой реальности в отдельных моментах времени или в их потоке.
39
Если Вселенная пространственно ограниченна, вы можете получить тот же результат, используя несколько промежуточных Х. Предположение о бесконечности пространства-времени Минковского помогает придать аргументу элегантность, но не является принципиальным.
Забавно, что в рамках блочной картины Вселенной нужно лишь верить, что настоящее реально. Рассуждения, приведенные выше, заставляют поверить, что прошлое и будущее столь же реальны, как настоящее. Но если нет различия между настоящим, прошлым и будущим, если рождение Земли или рождение моей праправнучки так же реальны, как тот момент, когда я пишу эти слова, настоящее время не имеет особых привилегий реальности, и реальна вообще вся история Вселенной.