Вход/Регистрация
Возвращение времени. От античной космогонии к космологии будущего
вернуться

Смолин Ли

Шрифт:

Язык квантовой теории предполагает активное вмешательство в природу. Он описывает, как экспериментатор ставит опыты с микроскопическими системами. Экспериментатор может изолировать систему и подготовить ее; преобразовать систему, подвергая ее внешним воздействиям; измерить систему путем внедрения в нее устройств, позволяющих считывать ответы на вопросы, которые он, возможно, хотел бы задать системе. Математический язык квантовой механики описывает каждый шаг подготовки, преобразования и измерения. Из-за особого внимания к манипуляциям с системой этот подход к квантовой физике можно назвать операциональным.

Центральным математическим понятием в квантовом описании системы является квантовое состояние. Оно содержит всю информацию, которую наблюдатель может узнать о квантовой системе в результате ее подготовки и измерения. Эта информация ограничена и в большинстве случаев не позволяет достаточно точно сказать, где находятся образующие систему частицы. Квантовое состояние – это вероятное положение частиц, если бы мы взялись измерить их положение.

Рассмотрим атом, состоящий из ядра и нескольких электронов. Наиболее точное описание атома включало бы информацию о положении каждого электрона. Совокупность расположения электронов представляет собой конфигурацию. В квантовой механике лучшим является описание, которое вместо этого дает вероятность для каждой возможной конфигурации, в каковой могут быть обнаружены электроны [46] .

46

Вероятность квантового состояния вычисляется в два этапа. На первом шаге квантовое состояние может быть представлено числом для каждой возможной конфигурации. Такое число называется амплитудой конфигурации. На втором шаге вы возводите амплитуду в квадрат, чтобы получить вероятность того, что система будет находиться в такой конфигурации. Почему необходимы эти два действия? Амплитуда – комплексное число, комбинация двух простых действительных чисел. Эта кодировка позволяет вычислить вероятность для других свойств (например импульс) системы, находящейся в том же квантовом состоянии.

Как проверить предсказания теории, если они имеют вероятностный характер? Например, мы подбрасываем монету и желаем проверить следующее предсказание: орел выпадет в 50 % случаев. Для этого недостаточно бросить монету один раз: результатом – в соответствии с предсказанием – окажется либо орел, либо решка. Необходимо многократно подбросить монету и записать, в скольких случаях выпал орел. По мере того, как вы бросаете монету, доля выпадения орла будет стремиться к 50 %. То же и с вероятностными прогнозами квантовой механики: чтобы их подтвердить, необходимо многократно повторить эксперимент [47] . Однократное измерение квантовой системы сродни подбрасыванию монеты: любой результат согласуется с предсказанием теории.

47

Если вы желаете проверить предсказание для вероятностей относительно положения электронов в атоме, необходимо приготовить много атомов в конкретном состоянии и измерить положения электрона в каждом атоме. Это дает экспериментальное распределение вероятностей. Вы можете сравнить экспериментальные данные с теоретическим предсказанием для конкретного квантового состояния. Если они согласуются в разумных пределах погрешности, у вас имеются доказательства того, что первоначальное утверждение о том, что система была в определенном квантовом состоянии, было верным.

Этот метод имеет смысл лишь применительно к маленькой замкнутой системе, например к атому водорода. Чтобы проверить предсказания, нам необходимо иметь большое количество идентичных копий системы. Если у нас лишь одна система, мы не можем проверить предсказания: они ведь вероятностные. Кроме того, мы должны уметь работать с коллекцией копий: сначала приводить их в интересующее нас квантовое состояние, а после осуществлять измерение. Но если у нас много копий системы, то каждая из них представляет собой малую часть всего сущего. При этом инструменты и оси координат, которыми мы пользуемся для измерения конфигураций системы, не являются ее частью.

Поэтому применение квантовой механики, очевидно, ограничивается замкнутыми системами. Это расширение ньютоновой парадигмы – физики “в ящике”. Чтобы убедиться в том, что метод квантовой механики основан на изучении замкнутых систем, рассмотрим, как квантовая механика описывает изменение времени.

Законы ньютоновой физики – детерминистические, и способность теории к прогнозам о том, как система изменяется со временем, ограничена. Аналогично, закон квантовой механики определяет, как со временем меняется квантовое состояние системы. Этот закон также детерминистический, поскольку при заданном начальном квантовом состоянии вы можете точно предсказать квантовое состояние системы в будущем.

Закон эволюции квантовых состояний выражается уравнением Шредингера. Он работает, как и законы Ньютона, однако описывает, как изменяется со временем состояние частиц, а не их положение. Если определить начальное квантовое состояние, уравнение Шредингера позволит узнать, какое квантовое состояние наступит в любой момент в будущем.

Как и в ньютоновой физике, наблюдатель, часы и инструменты измерения должны пребывать вне системы. При этом, хотя эволюция квантовых состояний детерминирована, конфигурация атомов лишь вероятностна: сама связь квантового состояния и конфигурации системы носит вероятностный характер.

Требование квантовой механики об исключении из системы часов приобретает особенное значение, если мы пытаемся применить квантовую теорию к Вселенной в целом. По определению, ничто (и часы тоже) не может находиться вне Вселенной. А как квантовое состояние Вселенной изменяется по отношению к часам за пределами Вселенной? Поскольку таких часов нет, единственный ответ гласит: оно не меняется. Квантовое состояние Вселенной, если смотреть с точки зрения мифического наблюдателя за пределами Вселенной, застыло.

Это, правда, скорее риторика, которая, как может показаться, может привести к ошибке. Однако математика дает нам тот же результат. Когда мы применяем уравнение Шредингера, квантовое состояние Вселенной во времени не изменяется.

В квантовой теории изменение во времени связано с энергией. Это следствие основной черты квантовой физики – корпускулярно-волнового дуализма. Ньютон полагал, что свет состоит из частиц. Позднее, когда были изучены явления дифракции и интерференции, пришлось предположить, что свет – это волна. В 1905 году Эйнштейн представил, что свет является и волной, и частицей. Почти 20 лет спустя Луи де Бройль предположил, что этот дуализм волн и частиц универсален: все, что движется, имеет некоторые свойства волны и некоторые – частицы.

  • Читать дальше
  • 1
  • ...
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: