Шрифт:
Дело не только в том, что теория, постулирующая эволюцию во времени, лучше, чем вневременная, описывает наблюдаемые данные. Теория, апеллирующая к эволюции, позволяет делать научные предсказания, а прогнозы, основанные на антропном принципе, подстраиваются в зависимости от нашего желания. Гипотезы, основанные на идее, что законы с течением времени меняются, проще проверить, чем вечные космологические сценарии. Ну а если идея не поддается экспериментальной проверке, то это уже не наука.
Глава 12
Квантовая механика и освобождение атома
Как мы убедились, реальность времени играет ключевую роль в решении проблемы отбора законов физики. Она подтверждает гипотезу о постепенном их изменении. Принимая время за основу, мы можем решить и другую важную задачу: разобраться в квантовой механике. Реальность времени позволяет по-новому ее сформулировать, а также понять, как изменяются законы. Квантовая механика – наиболее успешная из всех когда-либо предложенных физических теорий. Не будь квантовой механики, почти никаких современных цифровых, химических или медицинских технологий не существовало бы. И все же есть веские основания полагать, что эта теория неполна.
Квантовая механика загадочна. Со времени создания этой теории в 20-х годах XX века физики придумывают странные сценарии, иллюстрирующие внутренние проблемы квантово-механической теории. Вот некоторые из идей, призванных раскрыть тайны мира элементарных частиц: одновременно и живые, и мертвые кошки; бесконечное число одновременно существующих Вселенных; действительность, зависящая от того, что измеряется или кто наблюдатель; частицы, которые, находясь друг от друга на гигантском расстоянии, могут обмениваться сигналами со сверхсветовыми скоростями. Дело в том, что квантовая механика не может предсказать исход отдельно взятого опыта. Предсказания здесь имеют лишь статистический смысл.
Еще Эйнштейн утверждал, что квантовая теория неполна, поскольку она не предсказывает, что происходит в каждом конкретном случае. Что именно делает электрон, когда он перескакивает с одного энергетического уровня на другой? Как частицы, разнесенные на большое расстояние, мгновенно обмениваются информацией? Как они могут одновременно находиться сразу в двух местах? Квантовая теория не отвечает на эти вопросы. Тем не менее, она чрезвычайно полезна – отчасти потому, что объясняет гигантское количество экспериментальных данных. Если даже она не способна объяснить, что конкретно происходит на субатомном уровне, она предлагает алгоритм вероятностного предсказания результатов различных экспериментов. И до сих пор этот алгоритм работал безотказно.
Может ли быть теория успешной в плане предсказаний и в то же время некорректной в том смысле, что будущие теории могут полностью изменить ее предположения об устройстве мира? В истории науки такое случалось. Предположения, лежащие в основе механики Ньютона, были опровергнуты квантовой теорией и теорией относительности. Геоцентрическая модель Птолемея служила нам более тысячи лет, хотя и была основана на ошибочной гипотезе. Эффективность еще не гарантирует истинности.
Я пришел к убеждению, что квантовая механика со временем разделит судьбу теорий Ньютона и Птолемея. Возможно, мы не понимаем смысла квантовой теории именно потому, что она не является истинной. Вероятно, это приближение более глубокой теории, которая будет понятнее. Эта другая теория и есть пока неизвестная нам космологическая теория, о которой я пишу. Ключевым моментом здесь также является реальность времени.
Проблемы с пониманием квантовой механики возникают по трем причинам. Во-первых, квантовая теория не отвечает, что конкретно происходит в каком-либо процессе или эксперименте. В противоположность прежним теориям, квантовая механика не объясняет, как протекает процесс в каждый момент. Во-вторых, в большинстве случаев она не предсказывает точно исход опыта. Вместо этого квантовая теория предсказывает вероятность, с которой произойдет то или иное событие. Третьим (и самым трудным) моментом являются понятия измерения, наблюдения или информации, необходимой для формулировки теории. Эти понятия должны рассматриваться на аксиоматическом уровне. Они не могут быть объяснены исходя из фундаментальных предположений квантовой теории. Она не объясняет, как экспериментатор исследует микроскопические системы. На квантово-механическом языке не описываются ни инструменты, при помощи которых мы воздействуем на систему, ни часы, ни даже мы сами как наблюдатели. Чтобы построить истинную космологическую теорию, мы обязаны распространить ее на Вселенную в целом, включая нас как наблюдателей, измерительные приборы и часы [105] .
105
Существуют альтернативные взгляды на квантовую теорию, согласно которым она может быть применена для Вселенной в целом. Причины, по которым я считаю этот подход ошибочным, перечислены на сайте.
Занимаясь поисками этой новой теории, мы должны держать в памяти три свойства природы, установленные в рамках квантово-механической теории: несовместимые вопросы, запутанность и нелокальность.
Каждая система обладает некоторым набором свойств: для элементарных частиц это положение в пространстве и импульс [106] , а, например, для обуви – ее цвет и высота каблука. В отношении каждого свойства можно задать вопрос: “Где сейчас находится частица?” или “Какого цвета обувь?” Роль эксперимента как раз в том, чтобы, опросив систему, получить ответы на эти вопросы. Если вы желаете полностью описать систему в рамках классической физики, то должны ответить на все вопросы и получить информацию о всех свойствах системы. Но в квантовой теории, получив ответ на один из вопросов, вы попадаете в ситуацию, в которой ответ на второй вопрос получить невозможно.
106
Импульс для обычных частиц равен их массе, умноженной на скорость. Другим выражением несовместимости измерений является принцип неопределенности, который гласит, что чем точнее измеряется положение частицы в пространстве, тем менее точно мы можем измерить ее импульс, и наоборот.
Так, вы можете спросить, где находится частица или какой у нее импульс, но не можете узнать то и другое одновременно. Нильс Бор назвал это свойство комплементарностью (дополнительностью). Это имеют в виду физики, когда говорят о некоммутативных переменных. Если бы существовала квантовая мода, цвет обуви и высота каблука могли бы являться несовместимыми свойствами. В классической физике вам не надо выбирать, какое из свойств измерить, а какое оставить как неизмеряемое. И вот вопрос: влияет ли выбор экспериментатора на свойства исследуемой системы?