Шрифт:
Таким образом, и теория петлевой квантовой гравитации, и теория струн предполагают, что квантовая гравитация описывает ограниченные области пространства-времени и умещается в рамки ньютоновой парадигмы. Наиболее впечатляющие результаты достигнуты в контексте физики “в ящике”, не рассматривающей вопрос расширения теории до масштабов Вселенной.
Еще одно предположение петлевой квантовой гравитации, приводящее к появлению пространства-времени, таково: графы, описывающие квантовую геометрию пространства, ограничены его низкой размерностью [145] . В этом случае каждая вершина (или узел в графе) связана с небольшим числом других вершин. (Как и в пригороде, каждый транспортный узел имеет лишь несколько ближайших соседей.) Перемещаясь между двумя узлами, разнесенными на большое расстояние, частице приходится совершить много прыжков. Частице или кванту, несущим информацию, потребуется немало времени, чтобы пройти этот путь. Так возникает описание мира с конечной скоростью света. Однако существует много состояний квантовой геометрии, в которых версия локальности не наблюдается. Есть графы, в которых каждый узел связан со всеми остальными всего несколькими шагами. Но подобную квантовую геометрию пока не удается описать в рамках петлевой квантовой гравитации.
145
Дуальная триангуляция трехмерного многообразия.
Рассмотрим пример с двумя пространственными измерениями. Это большая область плоскости (рис. 13). Плоскость может быть представлена на языке квантовой геометрии в виде графа. Рассмотрим два узла, которые расположены в графе на расстоянии многих шагов друг от друга, и назовем их Тед и Мэри. Мы можем построить новый граф, который отличается добавлением ребра, непосредственно связывающего Теда и Мэри (рис. 16). Этот граф изображает квантовую геометрию, в которой Мэри и Тед являются соседями. Это как если бы оба они только что купили сотовые телефоны и пространство, разделяющее их, сжалось.
Рис. 16. Дополнительная нелокальная связь нарушает локальность, сближая две точки, разнесенные в пространстве на большое расстояние.
Если геометрия действительно имеет квантовую природу, то, возможно, в нашей наблюдаемой Вселенной 10180 узлов: один узел в масштабе планковской длины. Если каждый узел связан лишь с ближайшими соседями, квантовая геометрия в крупных масштабах может выглядеть как классическая. Локальность пространства в этом случае следует из особенностей квантовой геометрии. Число ребер и число узлов примерно одинаково, поскольку каждый узел соединен лишь с соседями, но при добавлении всего одного ребра к огромному числу ребер, образующих квантовую геометрию, мы радикально нарушим локальность, и это позволит разнесенным на большие расстояния узлам, таким как Тед и Мэри, общаться, по сути, мгновенно. Мы называем это нарушением локальности, а добавленное ребро – нелокальной связью [146] .
146
См.: Markopoulou, Fotini, and Lee Smolin Disordered Locality in Loop Quantum Gravity States // arXiv: gr-qc/0702044v2 (2007).
Нарушить локальность путем добавления одной нелокальной связи оказалось очень просто. Она может быть одним из 10180] ребер в наблюдаемой Вселенной, но есть 10360 способа встроить ее. Если бы вы добавили ее случайным образом в граф с 10180] узлами, она скорее стала бы нелокальной связью, чем локальной, поскольку число способов добавить нелокальные связи гораздо больше. Узел на одном конце ребра может быть связан с небольшим числом других узлов, если вы желаете встроить локальную связь. Но если вы не заботитесь о локальности, второй конец может быть соединен с любым узлом во Вселенной. Мы снова видим, каким строгим ограничением является требование локальности. Вы можете поинтересоваться: сколько нелокальных связей можно добавить в квантовую геометрию пространства, прежде чем это проявится в макромире? Поскольку обычные частицы обладают квантовой длиной волны на много порядков больше масштаба Планка, вероятность того, что фотон видимого света окажется на конце нелокальной связи и сможет перепрыгнуть от Теда сразу к Мэри, очень мала. Грубые расчеты показывают, что можно безболезненно добавить не менее 10100] таких нелокальных связей, прежде чем факт распространения сигналов быстрее скорости света обнаружится экспериментально. Это огромное число (но не столь большое, как 10180). Тем не менее, узлов, подключенных нелокально куда-то на другом конце Вселенной, будет достаточно много (в среднем более узла на 1 нм3 пространства).
Если мы позволяем образовывать нелокальные связи, появляется множество способов нарушить локальность. Мы также могли построить связь нескольких узлов со многими другими узлами. Эти очень социализированные узлы будут каналировать много информации.
Возможно ли, что Вселенная наполнена такими нелокальными связями? Как обнаружить их присутствие? Очевидный ответ – запутанность и другие проявления нелокальности в квантовой теории являются примерами нарушения локальности. Возможно, фундаментальный уровень описания природы, в котором пространства не существует, а есть только сеть взаимодействий, где все связано со всем, – это и есть теория скрытых параметров, существование которой я доказывал в главе 14? Если так, то квантовая теория и пространство выступают вместе [147] .
147
Это определило программу исследований, которые я вел (с перерывами) много лет. См.: Markopoulou, F., and L. Smolin Quantum Theory from Quantum Gravity // arXiv: grqc/0311059v2 (2004). Также см.: Barbour, Julian, and Lee Smolin Extremal Variety as the Foundation of a Cosmological Quantum Theory // arXiv: hep-th/9203041v1 (1992); Smolin, Lee Matrix Models as Nonlocal Hidden Variables Theories // arXiv: hepth/0201031v1 (2002); Smolin, Lee Quantum Fluctuations and Inertia // Phys. Lett. A, 113:8, 408–412 (1986); Smolin, Lee On the Nature of Quantum Fluctuations and Their Relation to Gravitation and the Principle of Inertia // Class. Quant. Grav. 3: 347–359 (1986); Smolin, Lee Stochastic Mechanics, Hidden Variables, and Gravity / In: Quantum Concepts in Space and Time. Ed. Penrose, R., and C. J. Isham. New York: Oxford University Press, 1986; Smolin, Lee Derivation of Quantum Mechanics from a Deterministic Nonlocal Hidden Variable Theory. 1. The Two-Dimensional Theory. IAS preprint, July 1983 .
Вот еще одна (умеренно безумная) гипотеза: нелокальные связи помогают объяснить природу темной энергии, которая приводит к ускорению расширения Вселенной [148] . Еще более смелым (и менее вероятным) предположением является их способность объяснить природу темной материи [149] . И вот, наконец, самая смелая гипотеза: заряженные частицы есть не что иное, как концы нелокальных связей [150] . Это напоминает давние идеи Уилера, что заряженные частицы могут представлять собой вход в кротовую нору в пространстве.
148
Prescod-Weinstein, Chanda, and Lee Smolin Disordered Locality as an Explanation for the Dark Energy // arXiv:0903.5303v3 [hep-th] (2009).
149
Темная материя – гипотетическая материя, которая не излучает свет, но необходима для объяснения вращения галактик на основе законов Ньютона.
150
Smolin, Lee Fermions and Topology // arXiv: gr-qc/9404010v1 (1994).
Кротовые норы – это гипотетические туннели между двумя областями, разнесенными на большое расстояние. Силовые линии электрического поля замыкаются на заряженных частицах, но они также появляются на выходах кротовых нор, куда они предположительно проходят по туннелю. Один конец будет действовать как частица с положительным зарядом, второй – как частица с отрицательным зарядом [151] . Нелокальная связь может сделать то же самое. Она перехватывает линии электрического поля и выглядит как частица и античастица, расположенные далеко друг от друга (рис. 17).
151
Misner, C. W., and J. A. Wheeler. Ann. Phys. (USA) 2, 525–603 (1957), reprinted in: Wheeler Geometrodynamics. New York: Academic Press, 1962.
Рис. 17. Нелокальная связь, как кротовая нора, захватила силовые линии электрического поля. Электрическое поле в районе одного из отверстий кротовой норы выглядит как образованное точечной заряженной частицей.
Небольшое число нелокальных соединений может быть даже выгодно, если одна из упомянутых идей верна. Но если нелокальных соединений слишком много, вы столкнетесь с проблемами при возникновении пространства. Это проблема обратной задачи. Легко аппроксимировать гладкую двумерную поверхность, скажем, поверхность сферы, сетью треугольников (рис. 18). Такой граф называется триангуляцией поверхности. (Именно это архитектор Ричард Бакминстер Фуллер сделал, изобретая геодезический купол. Очень скоро такие постройки появились во многих местах, а после люди вспомнили о преимуществах прямоугольных комнат.) Но давайте рассмотрим обратную задачу. У вас много треугольников. Я прошу, склеивая их по краям, построить случайную фигуру. Очень маловероятно, что у вас выйдет сфера. Скорее вы получите странные формы (рис. 19) с шипами и другими излишествами.