Вход/Регистрация
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
вернуться

Фейнман Ричард Филлипс

Шрифт:

Пусть расстояние между антеннами равно четверти длины волны и северная антенна отстает от южной по фазе на четверть периода. Что у нас тогда получится (фиг. 29.6)? Как мы дальше покажем, в западном направлении интенсивность равна 2. В южном направлении получится нуль, потому что сигнал от северного источника N приходит на 90° позже сигнала от южного источника S и, кроме того, он отстает по фазе еще на 90°; в ре­зультате полная разность фаз есть 180° и суммарный эффект равен нулю. В северном направлении сигнал от источника N приходит на 90° раньше сигнала от S, поскольку источник N на четверть волны ближе. Но разность фаз равна 90° и компен­сирует задержку во времени, поэтому оба сигнала приходят с одной фазой, что дает интенсивность, равную 4.

Таким образом, проявив некоторую изобретательность в расположении антенн и выбрав нужные сдвиги фаз, можно на­править энергию излучения в одном направлении. Правда, энер­гия будет

все-таки испускаться в довольно большой интервал углов. А можно ли сфокусировать излучение в более узкий ин­тервал углов? Обратимся снова к передаче волн на Гавайские острова; там радиоволны шли на запад и на восток в широком диапазоне углов и даже на угол 30° интенсивность была все­го вдвое меньше максимальной, энергия расходовалась впу­стую.

Можно ли улучшить это положение? Рассмотрим случай, когда расстояние между источниками равно десяти длинам волн (фиг. 29.7), а разность фаз колебаний равна нулю. Это ближе к ситуации, описанной ранее,

когда мы экспериментировали с интервалами, равными нескольким длинам волн, а не малым

долям длины волны.

Фиг. 29.7. Распределение интен­сивности двух диполей, находя­щихся на расстоянии 10l друг от друга.

Здесь иная картина.

Если расстояние между источниками равно десяти длинам волн (мы выбираем более легкий случай, когда они находятся в фазе), то в западном и восточном направлениях интенсивность максимальна и равна 4. Если же сдвинуться на небольшой угол, разность фаз станет равной 180° и интенсивность обратится в нуль. Более строго: если мы проведем прямые от каждого осцил­лятора до точки наблюдения и вычислим разность расстояний до осцилляторов D, причем D окажется равным l/2, то оба сигнала будут в противофазе и суммарный эффект равен нулю. Этому на­правлению отвечает первый нуль на фиг. 29.7 (масштаб на рисун­ке не выдержан, это, по существу, грубая схема). Это означает, что мы получаем узкий луч в нужном направлении; если же мы чуть сдвигаемся в сторону, интенсивность исчезает. Для прак­тических целей, к сожалению, такие передающие системы имеют существенный недостаток: при некотором угле расстояние D может стать равным l и тогда оба сигнала снова окажутся в фазе! В результате получается картина с чередующимися мак­симумами и минимумами, точь-в-точь как в гл. 28 для расстоя­ния между осцилляторами, равного 2,5l.

Как избавиться от всех лишних максимумов? Существует довольно интересный способ устранения нежелательных макси­мумов. Поместим между нашими двумя антеннами целый ряд других (фиг. 29.8). Пусть расстояние между крайними по-прежнему равно 10l, а через каждые 2l поставим по антенне и настроим все антенны на одну фазу. Всего у нас будет, таким образом, шесть антенн, и интенсивность в направлении запад — восток, конечно, сильно возрастет по сравнению с интенсивностью от одной антенны. Поле увеличится в шесть раз, а интенсивность, определяемая квадратом поля,— в трид­цать шесть раз. Поблизости от направления запад — восток, как и раньше, возникнет направление с нулевой интенсив­ностью, а дальше, там, где мы ожидали увидеть высокий мак­симум, появится всего лишь небольшой «горб». Попробуем разобраться, почему так происходит.

Фиг. 29.8. Устройство из шести дипольных антенн и часть распределения интенсивности его излучения.

Причина появления максимума, казалось бы, по-прежнему существует, поскольку D может равняться длине волны, и осцилляторы 1 и 6, находясь в фазе, взаимно усиливают свои сигналы. Но осцилляторы 3 и 4 оказываются не в фазе с осцилля­торами 1 и 6, отличаясь от них по фазе приблизительно на поло­вину длины волны, и вызывают обратный эффект по сравнению с этими осцилляторами. Поэтому интенсивность в данном на­правлении оказывается малой, хотя и не равной точно нулю. В результате возникает мощный луч в нужном направлении и ряд небольших побочных максимумов. Но в нашем частном примере есть одна добавочная неприятность: поскольку расстоя­ние между соседними диполями равно 2 l, можно найти угол, для которого разность хода s лучей от соседних диполей в точ­ности равна длине волны. Сигналы от соседних осцилляторов будут отличаться на 360°, т. е. снова окажутся в фазе, и в этом направлении мы получим еще один мощный пучок радиоволн! На практике этого эффекта легко избежать, если выбрать расстояние между осцилляторами меньше одной длины волны. Само же возникновение добавочных максимумов при расстоя­нии между осцилляторами более одной длины волны очень ин­тересно и важно, но не для передачи радиоволн, а для дифракционных решеток.

§ 5. Математическое описание интерференции

Мы рассматривали излучение диполей с качественной точки зрения, теперь рассмотрим количественную картину. Найдем прежде всего суммарное поле от двух источников в самом общем случае, когда разность фаз а и силы осцилляторов a 1 и А 2 произвольны; для этого необходимо сложить два косинуса с одинаковой частотой, но разными фазами. Разность фаз находится весьма просто: она складывается из разности, возникаю­щей за счет неодинакового удаления точки наблюдения от обоих источников, и внутренней, заданной разности фаз колебаний. Выражаясь математически, нам необходимо сложить две волны: R=a[cos(wt+j 1 )+А 2 cos (wt+j 2 ). Как это сделать?

Каждый, вероятно, сумеет провести это сложение, но тем не менее проследим за ходом вычислений. Прежде всего, если мы разбираемся в математике и достаточно ловко управляемся с синусами и косинусами, эту задачу легко решить. Самый про­стой случай, когда амплитуда a1 равна А2 , и пусть обе они обозначаются через А. В этих условиях (назовем это тригоно­метрическим методом решения задачи) мы имеем

(29.9)

На уроках тригонометрии вы, вероятно, доказывали равенство

  • Читать дальше
  • 1
  • ...
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: