Шрифт:
Прежде чем перейти к вопросу о преломлении света, сделаем еще одно замечание об отражении от зеркала. Если поместить источник света в точку В и направить луч на зеркало, свет, отражаясь от зеркала, пройдет из В в А так, как будто бы источник находится в В', а зеркала нет вообще. Наш глаз видит только тот свет, который действительно входит в него; и хотя источник расположен в точке В, зеркало направляет свет в глаз точно так, как будто источник находится в В', и система глаза — мозг интерпретирует именно так это явление. Поэтому иллюзия, что источник или предмет находится за зеркалом, вызывается только тем фактом, что свет попадает в глаз физически именно так, как если бы предмет действительно был позади зеркала (если не принимать во внимание пыль на зеркале и то, что нам известно, что зеркало реально существует, и другие сведения, которые учитывает наш мозг).
Покажем теперь, что из принципа наименьшего времени вытекает закон Снелла для преломления. Мы должны, конечно, что-то предположить относительно скорости света в воде. Будем считать, что скорость света в воде меньше скорости света в воздухе, и отношение второй скорости к первой обозначим через n.
Наша задача по-прежнему состоит в том, чтобы на фиг. 26.4 попасть из точки А в В за наименьшее время. Чтобы убедиться, что путь по прямой здесь не самый быстрый, представим себе следующую ситуацию: хорошенькая девушка падает из лодки в воду в точке В и кричит, просит спасти. Линия X — это берег. Вы находитесь на суше в точке А и видите, что произошло, вы умеете плавать и умеете бегать. Но бегаете вы быстрее, чем плаваете. Что вам делать? Бежать по прямой к берегу? (Конечно!) Но, немного поразмыслив, вы поймете, что выгоднее пробежать несколько дольше по берегу, чтобы уменьшить ваш путь в воде, потому что в воде вы будете двигаться гораздо медленнее. (Рассуждая таким образом, лучше всего было бы заранее тщательно вычислить путь!) Во всяком случае, давайте попытаемся показать, что окончательное решение задачи — это путь АСВ, который занимает из всех возможных наименьшее время. Если этот путь кратчайший по времени, то любой другой окажется длиннее. Поэтому если отложить на графике зависимость времени от положения точки X, получится кривая, похожая на изображенную на фиг. 26.5, где точка С соответствует наименьшему времени.
Фиг. 26.4. Иллюстрация принципа Ферма для случая преломления.
Фиг. 26.5 Наименьшее время получается при выборе точки С.
Соседние точки приводят примерно к такому же времени прохождения.
Это означает, что для точек X вблизи С в первом приближении время прохождения практически одинаковое, так как в точке С наклон кривой равен нулю. Итак, наш способ найти искомый путь сводится к требованию, чтобы при небольшом изменении положения точки время прохождения не менялось. (Конечно, возникнут бесконечно малые изменения времени второго порядка, и они должны быть положительными при смещении в обе стороны от точки С.) Возьмем близкую точку X, вычислим время прохождения на пути АХВ и сравним его со старым путем АСЕ. Сделать это очень просто. Конечно, нужно еще, чтобы разность времен стремилась к нулю для малых расстояний ХС. Обратимся сначала к пути по суше. Если мы опустим перпендикуляр ЕХ, то легко увидим, что наш путь стал короче на длину ЕС. Можно сказать, что это расстояние мы выиграли. С другой стороны, опустив перпендикуляр CF, мы увидим, что в воде приходится проплыть дополнительное расстояние XF. В этом мы проиграли. С точки зрения экономии времени выигрывается время на отрезке ЕС, но теряется на отрезке XF. Эти два интервала времени должны быть равны, так как в первом приближении полное время прохождения не меняется. Предположив, что скорость в воде равна скорости в воздухе, умноженной на 1/n получим
ЕС=nXF. (26.3)
Поэтому мы видим, что если нам удалось правильно выбрать точку С (XCsinEXC =nXCsinXCF) или мы сократили на длину общей гипотенузы ХС и заметили, что
EXC=ECN=qi и XCF=BCN'=qr,
то мы получим
sinqi=nsinqr. (26.4)
Отсюда видно, что при отношении скоростей, равном n, свет должен двигаться из одной точки в другую по такому пути, чтобы отношение синусов qit– и qr было равно отношению скоростей в двух средах.
§ 4. Применения принципа Ферма
Рассмотрим теперь некоторые интересные следствия принципа наименьшего времени. Первое из них — принцип обратимости. Мы уже нашли путь из A в В,требующий наименьшего времени; пойдем теперь в обратном направлении (считая, что скорость света не зависит от направления). Наименьшему времени отвечает та же траектория, и, следовательно, если свет распространяется по некоторому пути в одном направлении, он будет двигаться по этому пути и в обратном направлении.
Другой интересный пример! На пути света под некоторым углом поставлена четырехгранная стеклянная призма с параллельными гранями. Свет проходит из точки А в В и, встретив на своем пути призму (фиг. 26.6), отклоняется, причем длительность пути в призме уменьшается за счет изменения наклона траектории, а путь в воздухе немного удлиняется. Участки траектории вне призмы оказываются параллельными друг другу, потому что углы входа и выхода из призмы одинаковы.
Третье интересное явление состоит в том, что когда мы смотрим на заходящее солнце, то оно на самом деле находится уже ниже линии горизонта! Нам кажется, что солнце еще над горизонтом, а оно фактически уже зашло (фиг. 26.7). Дело здесь в следующем. Земная атмосфера вверху разрежена, а в нижних слоях более плотная. Свет распространяется в воздухе медленнее, чем в вакууме, и поэтому солнечные лучи достигнут какой-то точки за горизонтом быстрее, если будут двигаться не по прямой линии, а по траектории с более крутым наклоном в плотных слоях атмосферы, сокращая таким образом свой путь в этих слоях.
Еще пример того же рода — мираж, который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят на дороге «воду», а когда подъезжают туда, то кругом оказывается все сухо, как в пустыне! Сущность явления в следующем. То, что мы видим в этом случае, это «отраженный» дорогой свет. На фиг. 26.8 показано, как падающий на дорогу луч света попадает к нам в глаз. Почему? Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным, а потому и скорость света в нем больше, чем в холодном.