Шрифт:
или
J=(n– – n+)v. (43.22)
А что понимать под n– и n+? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n– — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n+ — плотность молекул на расстоянии длины свободного пробега справа от нее.
Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозначим na. Под na(х, у, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z). Тогда
разность (n+– n– ) можно представить в виде
(n+– n– )=(dna/dx)Dx=(dna/dx) ·2l (43.23)
Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем
Jx=lv(dna/dx) (43.24)
Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».
Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить vx, а разместив объемы, содержащие молекулы n+и n– , на концах перпендикуляров к площадке, взяли перпендикуляры длиной l. Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/3. Итак, более правильный ответ выглядит следующим образом:
Аналогичные уравнения можно написать для токов вдоль y- иz-направлений.
С помощью макроскопических наблюдений можно измерить ток Jхи градиент плотности dna/dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D, Это значит, что
Мы смогли показать, что ожидаемое значение коэффициента D для газа равно
Пока мы изучили в этой главе два разных процесса: подвижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутренними силами, случайными столкновениями). Однако эти процессы связаны друг с другом, потому что в основе обоих явлений лежит тепловое движение, и оба раза в расчетах появлялась длина свободного пробега l.
Если в уравнение (43.25) подставить l=vt и t=mm, то получится
Ho mv2 зависит только от температуры. Мы еще помним, что
1/2mv2=3/2kT, (43.29)
так что
Jx=-mkT(dna/dx). (43.30)
Таким образом, D, коэффициент диффузии, равен произведению kT на m, коэффициент подвижности:
D=mkT. (43.31)
Оказывается, что (43.31) — это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых предположений, не нужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных случаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.