Шрифт:
Q2=Q1– W. (44.3)
(Если бы наш процесс был циклическим и сконденсированная вода поступала бы снова в котел, то после каждого цикла при заданном количестве участвующей в цикле воды поглощалось бы тепло Q1и производилась бы работа W.)
А теперь построим другую машину и посмотрим, не сможем ли мы совершить большую работу при том же количестве тепла, выделяемого при температуре T1. В конденсоре будет поддерживаться та же температура Т2. Мы используем то же тепло Q1 из котла и попытаемся совершать большую работу, чем та, которая была произведена старой паровой машиной. Для этого, быть может, придется использовать другую жидкость, скажем спирт.
§ 3. Обратимые машины
Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения. Предположим, что мы имеем дело с теми же идеальными машинами, что и при изучении закона сохранения энергии, т. е. машинами, которым совсем не надо преодолевать трения.
А теперь обсудим аналог движения без трения — «лишенный трения» перенос тепла. Если мы приложим горячее тело к телу, обладающему более низкой температурой, то возникнет тепловой поток. Тепло течет от горячего тела к холодному, и, чтобы довернуть поток вспять, нужно слегка изменить температуру какого-нибудь одного тела. Но машина, лишенная трения, будет под действием сколь угодно малой силы послушно двигаться туда, куда ей приказывают, а когда сила будет действовать в другую сторону, охотно последует за ней. Аналогом машины без трения может служить устройство, в котором бесконечно малые изменения температуры могут повернуть тепловой поток вспять. Если разность температур конечна, то это невозможно. Но если тепло течет между двумя телами практически при одинаковой температуре и достаточно бесконечно малого изменения температуры, чтобы поток повернул в любом направлении, то поток считается обратимым (фиг. 44.4).
Фиг. 44.4. Обратимый перенос тепла.
Если нагреть слегка левую половину тела, тепло потечет вправо; если чуть-чуть охладить левую половину, тепло устремится влево. Итак, оказалось, что идеальной машиной является так называемая обратимая машина, в которой любой процесс обратим в том смысле, что малейшие изменения условий работы могут заставить машину работать в обратном направлении. Это означает, что машина не должна ни в каком месте иметь трения; в такой машине не должно быть также места, где тепло резервуара или пар котла прямо соприкасались бы с какими-то более холодными или более горячими частями.
Займемся идеальной машиной, в которой обратимы все процессы. Чтобы показать, что создание такой машины в принципе возможно, мы просто приведем пример рабочего цикла, причем нас не интересует возможность его практической реализации, достаточно того, что с точки зрения Карно он обратим.
Предположим, что в цилиндре, оборудованном поршнем без трения, имеется газ. Это не обязательно идеальный газ. Содержимое цилиндра вообще не обязано быть газом. Но для определенности будем считать, что в цилиндре идеальный газ. Предположим еще, что имеются две тепловые подушки Т1 и Т2— два очень больших тела, поддерживаемых при определенных температурах T1и Т2(фиг. 44.5).
Фиг. 44.5. Шаги цикла Карно.
а — шаг 1. Изотермическое расширения при t1, поглощается тепло Q1; 6 — шаг 2. Адиабатическое расширение; температура падает от T1, до Т2; в —шаг 3. Изотермическое сжатие при Т2; выделяется тепло Q2; г —шаг 4. Адиабатическое сжатие; температура поднимается от Т2, до T1.
Будем считать, что Т1больше Т2. Для начала нагреем газ и, положив цилиндр на подушку T1, позволим газу расшириться. Пусть по мере притока тепла в газ поршень очень медленно выдвигается из цилиндра. Тогда можно поручиться, что температура газа не будет сильно отклоняться от Т1. Если выдернуть поршень очень быстро, температура в цилиндре может упасть значительно ниже Т1и процесс уже нельзя будет считать полностью обратимым. Если же мы будем медленно вытаскивать поршень, температура газа останется близкой к температуре Т1. С другой стороны, если поршень медленно вдвигать обратно в цилиндр, температура станет лишь чуть-чуть повыше температуры Т1и тепло потечет вспять. Вы видите, что такое изотермическое (при постоянной температуре) расширение может быть обратимым процессом, если только производить его медленно и осторожно.
Чтобы лучше понять, что происходит, нарисуем кривую зависимости давления газа от его объема (фиг. 44.6).
Фиг. 44.6. Цикл Карно.
Когда газ расширяется, его давление падает. Кривая 1 показывает, как изменяются объем и давление, если в цилиндре поддерживается постоянная температура Т1. Для идеального газа эта кривая описывается уравнением PV=NkT1. Во время изотермического расширения по мере увеличения объема давление падает, пока мы не остановимся в точке b. За это время газ заберет из резервуара тепло Q1, ведь мы уже знаем, что если бы газ расширялся, не соприкасаясь с резервуаром, он бы остыл. Итак, мы закончили расширение в точке b. Давайте теперь: снимем цилиндр с резервуара и продолжим расширение.
Но теперь теплу уже неоткуда взяться. И снова мы медленно выдвигаем поршень, так что нет причины, почему бы процесс мог быть необратимым. Конечно, мы опять предполагаем, что трения нет. Газ продолжает расширяться, и температура падает, потому что связь с источниками тепла прервана.
Будем расширять газ так, чтобы расширение описывалось кривой 2 до тех пор, пока мы не достигнем точки с, где температура упадет до T2. Такое расширение без притока тепла называется адиабатическим. Мы уже знаем, что в случае идеального газа кривая 2 имеет вид PVg=const, где g — постоянная, большая единицы; поэтому адиабатическая кривая падает круче изотермической. Если температура газа в цилиндре