Шрифт:
АX(ВXС) = В(А·С)-С(А·В). (2.55)
Заменим в этой формуле А и В оператором у и положим C=h. Получится
СX(СXh) = С(Сb)-h(С·С)...???
Погодите-ка! Здесь что-то не так. Как и положено, первые два члена — векторы (операторы утолили свою жажду), но последний член совсем не такой. Он все еще оператор. Ошибка в том, что мы не были осторожны и не выдержали нужного порядка членов. Вернувшись обратно, вы увидите, что (2.55) можно с равным успехом записать в виде
АX(ВXС) = В(А·С) -(А·В)С. (2.56)
Такой порядок членов выглядит уже лучше. Сделаем нашу подстановку в (2.56). Получится
СX (СXh) = С (Сh)-( С·С)h. (2.57)
С этой формулой уже все в порядке. Она действительно правильна, в чем вы можете убедиться, расписав компоненты. Последний член — это лапласиан, так что с равным успехом можно написать
СX (СXh) = С(С·h)- С2h. (2.58)
Из нашего списка (2.45) двойных С мы разобрали все комбинации, кроме (в), С(С·h). В ней есть смысл, это — векторное поле, но больше сказать о ней нечего. Это просто векторное поле, которое может случайно возникнуть в каком-нибудь расчете.
Удобно будет все наши рассуждения свести теперь в таблицу:
(2.59)
Вы могли заметить, что мы не пытались изобрести новый векторный оператор СХС. Понимаете, почему?
§ 8. Подвохи
Мы применили наши знания обычной векторной алгебры к алгебре оператора y Здесь нужно быть осторожным, иначе легко напутать. Нужно упомянуть о двух подвохах (впрочем, в нашем курсе они не встретятся). Что можете вы сказать о следующем выражении, куда входят две скалярные функции ш и j (фи):
Вы можете подумать, что это нуль, потому что оно похоже на
(Аa)X(Аb),
а это всегда равно нулю (векторное произведение двух одинаковых векторов АXА всегда нуль). Но в нашем примере два оператора С отнюдь не одинаковы! Первый действует на одну функцию, ш, а второй — на другую, j. И хотя мы изображаем их одним и тем же значком у, они все же должны рассматриваться как разные операторы. Направление Сш зависит от функции ш, а направление Сj — от функции j, так что они не обязаны быть параллельными:
(Сш)X(Сj)№0 (в общем случае).
К счастью, к таким выражениям мы прибегать не будем. (Но сказанное нами не меняет того факта, что СjXСш =0 в любом скалярном поле: здесь обе Сдействуют на одну и ту же функцию.) Подвох номер два (он тоже в нашем курсе не встретится): правила, которые мы здесь наметили, выглядят просто и красиво только в прямоугольных координатах. Например, если мы хотим написать x-компоненту выражения С2h, то сразу пишем
(2.60)
Ио это выражение не годится, если мы ищем радиальную компоненту С2h. Она не равна С2hr. Дело в том, что в алгебре векторов все их направления полностью определены. А когда мы имеем дело с векторными полями, то их направления в разных местах различны. Когда мы пробуем описать векторное поле, например, в полярных координатах, то «радиальное» направление меняется от точки к точке. И начав дифференцировать компоненты, вы запросто можете попасть в беду. Даже в постоянном векторном поле радиальная компонента от точки к точке меняется.
Обычно безопаснее и проще всего держаться прямоугольных координат. Но стоит упомянуть и одно исключение: поскольку лапласиан С2 есть скаляр, то можно писать его в любой системе координат (скажем, в полярных координатах). Но так как это дифференциальный оператор, то применять его надо только к векторам с фиксированным направлением компонент, т. е. к заданным в прямоугольных координатах. Итак, расписывая наши векторные дифференциальные уравнения покомпонентно, мы будем предварительно выражать все наши векторные поля через их х-, у-, z-компоненты.
* В наших обозначениях выражение (а, b, с) представляет вектор с компонентами а, b, с. Если вам нравится пользоваться единичными векторами i, j и k, то можно написать
* Мы рассматриваем h как физическую величину, зависящую от положения в пространстве, а не как заданную математически функцию трех переменных. Когда h «дифференцируется» по х, у и z или по х', у' и z', то математическое выражение для h должно быть предварительно выражено в виде функции соответствующих переменных, Поэтому в новой системе координат мы не отмечаем h штрихом.