Шрифт:
Рассмотрим теперь показатель преломления в металле типа меди при высоких частотах. Для очень высоких частот сот много больше единицы, и уравнение (32.42) очень хорошо аппроксимируется следующим:
Для высокочастотных волн показатель преломления в металлах становится чисто вещественным и меньшим единицы! Это следует также из выражения (32.38), если пренебречь диссипативным членом с 7, что может быть сделано при очень больших значениях w. Выражение (32.38) дает при этом
что, разумеется, эквивалентно уравнению (32.50). Раньше нам
уже встречалась величина (Nq2e/e0m)1/2, которую мы назвали
плазменной частотой (см. гл. 7, § 3, вып. 5);
Таким образом, (32.50) или (32.51) можно переписать в виде
Эта плазменная частота является своего рода «критической». Для w<wр показатель преломления металла имеет мнимую часть и происходит поглощение волн, но при w>>wp показатель становится вещественным, а металл — прозрачным. Вы знаете, конечно, что металлы в достаточной мере прозрачны для рентгеновских лучей. Но некоторые металлы прозрачны даже для ультрафиолета. В табл. 32.3 мы приводим для некоторых металлов экспериментально наблюдаемые длины волн, при которых эти металлы начинают становиться прозрачными. Во второй колонке дана вычисленная критическая длина волны lp =2pc/wp . Учитывая, что экспериментальная длина волны определена не очень хорошо, согласие с теорией следует признать замечательным.
Таблица 32.3 · длины волн, при которых МЕТАЛЛ СТАНОВИТСЯ ПРОЗРАЧНЫМ
Вас может удивить, почему плазменная частота wр должна иметь отношение к распространению волн в металлах. Плазменная частота появилась у нас в гл. 7 (вып. 5) как собственная частота колебаний плотности свободных электронов. (Электрическое расталкивание группы электронов и их инерция приводят к колебаниям плотности.) Продольные волны плазмы резонируют при частоте w. Но сейчас мы говорим о поперечных волнах, и мы уже нашли, что при частотах, меньших wр, происходит их поглощение. (Это очень интересное и отнюдь не случайное совпадение.)
Хотя мы все время говорили о распространении волн в металлах, вы одновременно, должно быть, почувствовали универсальность явлений физики: нет никакой разницы в том, находятся ли свободные электроны в металле, в плазме, в ионосфере Земли или в атмосфере звезд. Чтобы понять распространение радиоволн в ионосфере, можно воспользоваться тем же выражением, разумеется, при надлежащих значениях величин N и t. Теперь мы можем видеть, почему длинные радиоволны поглощаются или отражаются ионосферой, тогда как короткие свободно проходят через нее. (Поэтому для связи с искусственными спутниками Земли должны применяться короткие волны.)
Мы говорили о распространении предельных высоко- и низкочастотных волн в металлах. Для промежуточных же частот необходимо использовать «полновесное» уравнение (32.42). В общем случае показатель преломления будет иметь вещественную и мнимую части, и при распространении волн в металлах происходит их поглощение. Очень тонкие слои металла прозрачны даже для обычных оптических частот. В качестве примера приведем специальные защитные очки для рабочих, работающих около высокотемпературных печей. Эти очки изготавливаются напылением на стекло очень тонкого слоя золота; стекло это достаточно прозрачно для видимого света и на просвет выглядит как зеленое, но инфракрасные лучи сильно поглощает.
И, наконец, от читателя невозможно скрыть тот факт, что многие из этих формул в некотором отношении напоминают формулы для диэлектрической проницаемости c, рассмотренные в гл. 10 (вып. 5). Диэлектрической проницаемостью c измеряется реакция материала на статическое электрическое поле, т. е. когда w=0. Если вы посмотрите повнимательнее на определение n и c, то обнаружите, что c есть не что иное, как предел n2 при w®0. В самом деле, положив в уравнениях этой главы w=0 и n2=c, мы воспроизведем уравнения теории диэлектрической проницаемости гл. 11 (вып. 5).
* Или записав — i=е – i p / 2 ; Ц-i=e – i p /4 = соsp/4- isinp/4, что приводит к тому же результату.