Вход/Регистрация
Фейнмановские лекции по физике. 7. Физика сплошных сред
вернуться

Фейнман Ричард Филлипс

Шрифт:

Так что если ядро находится в пустом пространстве в отсутствие внешних полей, то у него имеются четыре возможных состоя­ния, каждое с одной и той же энергией. Для системы со спином 2 z-компонента момента количества движения принимает в еди­ницах hтолько следующие значения:

2; 1; 0; -1; -2.

Если вы подсчитаете, сколько возможно состояний для данного спина j, то их получится (2j+1). Другими словами, если вы скажете мне, какова энергия системы и ее спин j, то число сос­тояний с этой же энергией в точности будет равно (2j+1), причем каждое из них соответствует одной из различных вели­чин z-компоненты момента количества движения.

Мне хотелось бы прибавить еще один факт. Если вы слу­чайно выберете некоторый атом с известным j и измерите его s-компоненту момента количества движения, то сможете полу­чить какое-то одно из возможных значений, причем каждое из них равновероятно. Любое состояние может характеризоваться только одним из возможных значений, но каждое из них столь же хорошо, как и любое другое. Каждое из них имеет в мире один и тот же вес (мы предполагаем, что никакой предвари­тельной «сортировки» не было).

Кстати, этот факт имеет простой классический аналог. Представьте, что тот же самый вопрос вас интересует с класси­ческой точки зрения: какова вероятность какого-то определен­ного значения z-компоненты момента количества движения, если из набора систем, имеющих один и тот же момент количе­ства движения, вы наугад выбрали одну? Ответ: любое из значений от максимального до минимального равновероятно (в чем вы можете легко убедиться сами). Этот классический результат соответствует равной вероятности любой из (2j+1) возможностей в квантовой механике.

Из того, что у нас было до сих пор, можно получить другое интересное и в каком-то смысле удивительное заключение. В некоторых классических расчетах в окончательном резуль­тате появлялась величина, равная квадрату момента коли­чества движения J, другими словами, J·J. И вот оказывается, что правильную квантовомеханическую формулу можно уга­дать с помощью классических вычислений и следующего прос­того правила: замените J2 = J·J на j(j+1)h2. Этим прави­лом часто пользуются, и обычно оно дает верный результат, однако не всегда. Чтобы показать вам, почему это правило может хорошо работать, я приведу следующее рассуждение.

Скалярное произведение J·J можно записать как

J·J=J2x+J2y+J2z

Поскольку это скаляр, то он должен оставаться одним и тем же для любой ориентации спина. Предположим, что мы случай­но выбрали образец какой-либо атомной системы и произвели измерения либо величины J2x, либо J2y, либо J2z — среднее

значение любой из них должно быть тем же самым. (Ни одно из направлений не имеет особого преимущества перед любым другим.) Следовательно, среднее значение J·J равно просто утроенной средней величине любой компоненты, скажем J2z :

<J·J>cp=3<J2z>.

Но поскольку J·J при любой ориентации одно и то же, его среднее, разумеется, будет постоянной величиной

J·J = 3<J2z>cp. (34.24)

Если же мы теперь скажем, что то же самое уравнение будет использоваться и в квантовой механике, то можем легко найти <J2z>ср. Нам просто нужно взять сумму (2j+1) возможных значений J2zи поделить ее на число всех значений:

Вот что получается для системы со спином 3/2:

Отсюда мы заключаем, что

На вашу долю остается доказать, что соотношение (34.25) вместе с (34.24) дает в результате

Хотя в рамках классической физики мы бы думали, что наи­большее возможное значение z-компоненты J равно просто абсолютной величине J, именно Ц(J·J), в квантовой механике максимальное значение Jzвсегда немного меньше его, ибо jh всегда меньше Ц[j(j+1)]h. Момент количества движения ни­когда не направлен «полностью вдоль оси z».

  • Читать дальше
  • 1
  • ...
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: