Вход/Регистрация
Фейнмановские лекции по физике. 7. Физика сплошных сред
вернуться

Фейнман Ричард Филлипс

Шрифт:

* Кстати, точно такое же уравнение возникает и в других физических ситуациях: например, в мениске на поверхности жидкости, заключенной между двумя параллельными стенками, а поэтому можно воспользоваться тем же самым геометрическим рассмотрением.

* Решение его можно выразить также через особые функции, называе­мые «эллиптическими функциями Якоби», которые когда-то раз навсегда были вычислены и протабулированы.

* Это и есть момент инерции пластинки единичной плотности и с единичной площадью сечения

Глава 39

УПРУГИЕ МАТЕРИАЛЫ

§ 1. Тензор деформации

§ 2. Тензор упругости

§ З. Движения в упругом теле

§ 4. Неупругое поведение

§ 5. Вычисление упругих постоянных

§ 1. Тензор деформации

В предыдущей главе мы говорили о возму­щениях упругих тел в простых случаях. В этой главе мы посмотрим, что может происходить внутри упругого материала в общем случае. Как описать условия напряжения и деформа­ции в большом куске желе, скрученном и сжа­том каким-то очень сложным образом? Для этого необходимо описать локальную деформацию в каждой точке упругого тела, а это можно сде­лать, задав в ней набор шести чисел — компо­нент симметричного тензора. Ранее (в гл. 31) мы говорили о тензоре напряжений, теперь же нам потребуется тензор деформации.

Предположим, что мы взяли недеформиро­ванный материал и, прикладывая напряжение, наблюдаем за движением маленького пятныш­ка примеси, попавшей внутрь. Пятнышко, которое вначале находилось в точке Р и имело положение г=(x, у, z), передвигается в новую точку Р', т. е. в положение r'=(х', у', z'), как это показано на фиг. 39.1.

Фиг. 39.1. Пятнышко примеси в материале из точки Р недеформированного кубика после деформации пере­мещается в точку Р'.

Мы будем обозначать через и вектор перемещения из точки Р в точ­ку Р', т. е.

u = r'-r. (39.1)

Перемещение и зависит, конечно, от точки Р, из которой оно выходит так, что и есть векторная функция от г или от (х, у, z).

Сначала рассмотрим простейший случай, ког­да деформация по всему материалу постоянна, т. е. то, что называется однородной деформацией. Предположим, например, что мы взяли балку из како­го-то материала и равномерно ее растянули. Иначе говоря, мы просто равномерно изменили ее размер в одном направле­нии, скажем в направлении оси х (фиг. 39.2).

Фиг. 39.2. Однородная деформация растяжения.

Перемещение uxпятнышка с координатой х пропорционально самому х.

Действительно,

Мы будем записывать uxследующим образом:

и x =е хх х.

Разумеется, константа пропорциональности ехх— это то же, что наше старое отношение Dl/l. (Скоро вы увидите, почему нам потребовался двойной индекс.)

Если же деформация неоднородна, то связь между х и uxв материале будет изменяться от точки к точке. В таком общем случае мы определим еххкак своего рода локальную величину Dl/l, т. е.

Это число, которое теперь будет функцией х, у и z, описывает величину растяжения в направлении оси х по всему куску желе. Возможны, конечно, растяжения и в направлении осей у и z. Мы будем описывать их величинами

Кроме того, нам нужно описать деформации типа сдви­гов. Вообразите, что в перво­начально невозмущенном желе вы выделили маленький кубик. Нажав на желе, мы изменяем его форму, и наш кубик может превратиться в параллелограмм (фиг. 39.3).

  • Читать дальше
  • 1
  • ...
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: