Вход/Регистрация
Фейнмановские лекции по физике. 7. Физика сплошных сред
вернуться

Фейнман Ричард Филлипс

Шрифт:

Фиг. 39.3. Однородная деформация сдвига.

При такой дефор­мации перемещение в направлении х каждой частицы пропорционально ее координате у:

а перемещение в направлении у пропорционально х:

uy=(q/2)x. (39.5)

Таким образом, деформацию сдвигового типа можно описать с помощью

ux=exyy uу=eyxx,

где

Теперь вы сочтете, что при неоднородной деформации обоб­щенную деформацию сдвига можно описать, определив вели­чины еxyи еyxследующим образом:

Однако здесь есть некая трудность. Предположим, что пере­мещения uхи uyимеют вид

Они напоминают уравнения (39.4) и (39.5), за исключением того, что при uyстоит обратный знак. При таком перемещении маленький кубик из желе претерпевает простой поворот на угол q/2 (фиг. 39.4).

Фиг. 39.4. Однородный поворот. Никаких деформаций нет.

Никакой деформации здесь вообще нет, а есть просто вращение в пространстве. При этом никакого возмущения материала не происходит, а относительное поло­жение всех атомов совершенно не изменяется. Нужно как-то устроить так, чтобы чистое вращение не входило в наше опре­деление деформации сдвига. Указанием может послужить то, что если дuy/дх и дux/ду равны и противоположны, никакого напряжения нет; этого можно добиться, определив

Для чистого вращения оба они равны нулю, но для чистого сдвига мы получаем, как и хотели, еху=еуx.

В наиболее общем случае возмущения, который наряду со сдвигом может включать растяжение или сжатие, мы будем определять состояние деформации заданием девяти чисел:

Они образуют компоненты тензора деформации. Поскольку тензор этот симметричен (согласно нашему определению, ехувсегда равно еух), то на самом деле различных чисел здесь только шесть. Вы помните (см. гл. 31) общее свойство всех тен­зоров — элементы его преобразуются при повороте подобно произведению компонент двух векторов. (Если А и В — век­торы, то Сij=АiВj — тензор.) А каждое наше eijесть про­изведение (или сумма таких произведений) компонент вектора

u=(uх, uу, uz) и оператора С=(д/дx,д/дy,д/дz), который, как

мы знаем, преобразуется подобно вектору. Давайте вместо х, у и z писать x1, x2и x3, а вместо uх, uyи uгписать u1, u2 и u3; тогда общий вид элемента тензора eijбудет выглядеть так:

где индексы i и j могут принимать значения 1, 2 или 3.

Когда мы имеем дело с однородной деформацией, которая может включать как растяжения, так и сдвиги, то все eij — постоянные, и мы можем написать

uх=еххх+ехуy+ехzг. (39.9)

  • Читать дальше
  • 1
  • ...
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: