Шрифт:
Наконец, если рассмотреть любые два состояния |j> и |y>, то амплитуду того, что состояние |y>окажется также в состоянии |j>, можно найти, проецируя сперва состояние |y> на базисные состояния, а затем каждое из базисных состояний — на состояние |j>. Это записывается так:
Суммирование, конечно, проводится по всей совокупности базисных состояний | i>.
В гл. 11, когда мы рассчитывали, что бывает с электроном, помещенным в линейную цепочку атомов, вы выбрали совокупность базисных состояний, в которых электрон был расположен близ того или иного из атомов цепочки. Базисное состояние |n> представляло электрон, локализованный (расположенный) возле атома номер п. (Конечно, неважно, обозначать ли наши базисные состояния |n> или |i>.) Чуть позже мы нашли, что базисные состояния удобнее метить координатой атома, а не номером атома в цепочке. Состояние | хn> — это просто другой способ записи состояния |n>. Тогда, следуя общему правилу, любое состояние |y> можно описать заданием того, что электрон в состоянии |y> находится также в одном из состояний |хn>. Для удобства мы решили обозначать эти амплитуды символом
Cn=<xn|y>. (14.6)
Поскольку базисные состояния связаны с местоположением электрона на линии, то амплитуду Сnможно рассматривать как функцию координаты х и писать ее в виде С(хn). Амплитуды С(хn)будут в общем случае меняться во времени и поэтому суть также функции от t, но мы не будем отмечать эту зависимость явно.
Кроме того, в гл. 11 мы предположили, что амплитуды С(хn) обязаны меняться во времени так, как положено по гамильтонову уравнению (11.3). В нашем новом обозначении это уравнение имеет вид
Два последних слагаемых в правой части представляют такой процесс, когда электрон, находившийся возле атома (n+1) или возле атома (n-1), окажется возле атома (n).
Мы нашли, что (14.7) имеет решения, отвечающие состояниям определенной энергии. Мы записывали их в виде
У состояний с низкой энергией длины волн велики (k мало) и энергия связана с k формулой
или, если выбрать нуль энергии так, чтобы было (Е0– 2А)=0, то энергия дается формулой (14.1).
Посмотрим, что бы произошло, если бы мы позволили расстоянию b между атомами решетки стремиться к нулю, сохраняя волновое число постоянным. Если бы больше ничего не случилось, то последнее слагаемое в (14.9) обратилось бы просто в нуль, и никакой физики бы не осталось. Но предположим, что А и b вместе изменяются так, что при стремлении b к нулю произведение Ab2поддерживается постоянным: с помощью (14.2) мы запишем Аb2в виде постоянной h2/2mэфф. При этом (14.9) не изменится, но что произойдет с дифференциальным уравнением (14.7)?
Перепишем сперва (14.7) так:
При нашем выборе Е0первое слагаемое выпадет. Далее, представим себе непрерывную функцию С(х), которая плавно проходит через значения С(хn)в точках хn. Когда расстояние b стремится к нулю, точки хnсближаются все теснее и теснее и [если С(х)меняется достаточно плавно] величина в скобках попросту пропорциональна второй производной С(х). Можно написать (в чем легко убедиться, разложив в ряд Тэйлора каждый член) равенство
Тогда в пределе, когда b стремится к нулю, а b2A поддерживается равным h2/2mэфф, уравнение (14.7) переходит в
Перед нами уравнение, утверждающее, что скорость изменения С(х) — амплитуды того, что электрон будет обнаружен в х— зависит от амплитуды того, что электрон будет обнаружен в близлежащих точках так, что эта скорость пропорциональна второй производной амплитуды по координате.