Вход/Регистрация
Логика и аргументация: Учебное пособие для вузов.
вернуться

Рузавин Георгий Иванович

Шрифт:

Начало применения этого метода в науке связывают с именем Г. Галилея, который использовал его в своих исследованиях законов свободного падения тел. Отказавшись от умозрительных принципов аристотелевской физики, Галилей стал проверять свои гипотезы путем вывода из них следствий, которые можно было сопоставить с результатами экспериментов. В этих целях он начал проводить тщательные измерения и обрабатывать полученные данные математически. Так, по сути дела, возник экспериментальный метод в точном естествознании, подлинным триумфом которого стало открытие Ньютоном законов механики и всемирного тяготения.

Нетрудно заметить, что в гипотетико-дедуктивном методе органически сочетаются индуктивные и дедуктивные приемы исследования. Первые используются на первоначальной, эмпирической стадии познания, когда приходится анализировать факты, делать обобщения и т.п. Но для выдвижения гипотезы этого далеко не достаточно, так как при этом используются все другие интеллектуальные способности и средства: в первую очередь интуиция, воображение, аналогии и т.д., которые трудно поддаются логическому анализу. Дедукция же начинает применяться тогда, когда гипотеза будет сформулирована. Из нее затем по правилам дедуктивных умозаключений выводят следствия, которые сопоставляют с эмпирическими утверждениями (фактами, данными, свидетельствами и т.п.). Подтверждение или опровержение следствий данными опыта служит критерием для принятия или отказа от гипотезы.

Почти одновременно с утверждением гипотетико-дедуктивного метода в опытных науках в середине прошлого века начался новый этап в развитии дедуктивной логики. Он был связан с применением символических средств и математических методов для анализа дедуктивных выводов. Первые работы в данном направлении относились к использованию понятий и методов алгебры для анализа силлогизмов. Поэтому само это направление получило название алгебры логики (О. де Морган, Дж. Буль, У.С. Джевонс, Ч. Пирс, П.С. Порецкий, Э. Шрёдер).

Дальнейшее развитие математической логики было связано с переходом от изучения общелогических проблем к анализу математических рассуждений и доказательств. Первый крупный шаг был сделан выдающимся немецким логиком Г. Фреге, который с помощью созданного им формализованного языка показал, как можно осуществить тщательный анализ логической структуры рассуждения во всех его деталях. Другая, не менее важная цель Фреге состояла в том, чтобы свести формализованную им арифметику к символической логике. Но обнаружение Б. Расселом противоречия в системе Г. Фреге заставило его отказаться от завершения своей работы.

Противоречия и парадоксы, обнаруженные в фундаменте здания математики - канторовской теории множеств, значительно усилили интерес к математической логике. Многие надеялись с ее помощью избавиться от парадоксов. Возникновение нового раздела этой логики - теории алгоритмов, на которую опирается в свою очередь теория математического программирования для вычислительных машин, открыли новые перспективы для математизации и компьютеризации научного знания и различных видов практической деятельности.

В последние десятилетия значительное внимание стало уделяться также логике неформальных рассуждений, которые служат основой для учения об аргументации. В отличие от доказательства, аргументация опирается на диалог, в ходе которого собеседники ведут поиск истины. Такой возврат к традиции, ведущей свое начало от Сократа и Платона, оказывается весьма плодотворным в разнообразных видах гуманитарной деятельности, где приходится вести спор, полемику, дискуссию. В этих условиях простое формальное доказывание отступает на второй план перед умением приводить аргументы (или доводы) в защиту своей позиции, обосновывать их правдоподобность, оценивать их вес, находить контрдоводы и возражения утверждениям оппонента и т.п. Все это требует разработки теории правдоподобных рассуждений, а в более широкой перспективе - принципов применения логики к научному знанию и практической деятельности.

1.3. Логика и другие науки

Принципы и правила логики имеют универсальный характер, поскольку в любой науке постоянно делаются выводы, определяются и уточняются понятия, формулируются утверждения, обобщаются факты, проверяются гипотезы и т.д. С этой точки зрения каждую науку можно рассматривать как прикладную логику. Но особо тесные связи существуют между логикой и теми науками, которые заняты изучением мыслительной деятельности человека как в индивидуальном, так и социальном плане.

Четкое разграничение сфер исследования наук о духовной деятельности имеет непосредственное отношение к определению предмета и методов исследования логики. Можно выделить три основных направления, по которым происходило воздействие разных подходов на содержание и характер методов логики.

1. Сторонники психологизма стремились истолковывать принципы и законы логики как непосредственное выражение устойчивых связей между мыслями, которые возникают у субъекта в процессе рассуждения. Ассоциация и диссоциация мыслей, их интеграция и дезинтеграция служат, по мнению психологистов, основой для формирования суждений и умозаключений. Таким образом, принципы и законы логики оказываются законами субъективной психической деятельности, а сама логика превращается в часть психологии. Но в таком случае логические законы лишаются объективного содержания и становится неясным, на какие общезначимые критерии опираются люди, когда они стремятся в чем-то убедить друг друга, вскрывают логические ошибки в рассуждениях, достигают взаимопонимания и согласия. На эти и подобные вопросы психологисты не дают обоснованных ответов.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: